Cargando…

IL-34 Aggravates Steroid-Induced Osteonecrosis of the Femoral Head via Promoting Osteoclast Differentiation

IL-34 can promote osteoclast differentiation and activation, which may contribute to steroid-induced osteonecrosis of the femoral head (ONFH). Animal model was constructed in both BALB/c and IL-34 deficient mice to detect the relative expression of inflammation cytokines. Micro-CT was utilized to re...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Feng, Min, Hong Sung, Shan, Haojie, Yin, Fuli, Jiang, Chaolai, Zong, Yang, Ma, Xin, Lin, Yiwei, Zhou, Zubin, Yu, Xiaowei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Association of Immunologists 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250868/
https://www.ncbi.nlm.nih.gov/pubmed/35799706
http://dx.doi.org/10.4110/in.2022.22.e25
Descripción
Sumario:IL-34 can promote osteoclast differentiation and activation, which may contribute to steroid-induced osteonecrosis of the femoral head (ONFH). Animal model was constructed in both BALB/c and IL-34 deficient mice to detect the relative expression of inflammation cytokines. Micro-CT was utilized to reveal the internal structure. In vitro differentiated osteoclast was induced by culturing bone marrow-derived macrophages with IL-34 conditioned medium or M-CSF. The relative expression of pro-inflammation cytokines, osteoclast marker genes, and relevant pathways molecules was detected with quantitative real-time RT-PCR, ELISA, and Western blot. Up-regulated IL-34 expression could be detected in the serum of ONFH patients and femoral heads of ONFH mice. IL-34 deficient mice showed the resistance to ONFH induction with the up-regulated trabecular number, trabecular thickness, bone value fraction, and down-regulated trabecular separation. On the other hand, inflammatory cytokines, such as TNF-α, IFN-γ, IL-6, IL-12, IL-2, and IL-17A, showed diminished expression in IL-34 deficient ONFH induced mice. IL-34 alone or works in coordination with M-CSF to promote osteoclastogenesis and activate ERK, STAT3, and non-canonical NF-κB pathways. These data demonstrate that IL-34 can promote the differentiation of osteoclast through ERK, STAT3, and non-canonical NF-κB pathways to aggravate steroid-induced ONFH, and IL-34 can be considered as a treatment target.