Cargando…

Analysis of Lymphoma-Related Genes with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Enrichment

Lymphoma is a serious malignant tumor that contains more than 70 different types and seriously endangers the body's lymphatic system. The lymphatic system is the regulatory center of the immune system and is important in the immune response to foreign antigens and tumors. Studies showed that mu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Qiao, Bai, Lin, Zhu, Shaopin, Cheng, Lu, Xu, Yang, Cai, Yu-Dong, Chen, Hui, Zhang, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251090/
https://www.ncbi.nlm.nih.gov/pubmed/35795312
http://dx.doi.org/10.1155/2022/8503511
Descripción
Sumario:Lymphoma is a serious malignant tumor that contains more than 70 different types and seriously endangers the body's lymphatic system. The lymphatic system is the regulatory center of the immune system and is important in the immune response to foreign antigens and tumors. Studies showed that multiple genetic variants are associated with lymphoma but determining the pathogenic mechanisms remains a challenge. In the present study, we first applied the Gene Ontology (GO) and KEGG pathway enrichment analyses of lymphoma-associated and lymphoma-nonassociated genes. Next, the Boruta and max-relevance and min-redundancy feature selection methods were performed to filter and rank features. Then, features preselected and ranked using the incremental feature selection method were applied for the decision tree model to identify the best GO terms and KEGG pathways and extract classification rules. Results indicate that our predicted features, such as B-cell activation, negative regulation of protein processing, negative regulation of mast cell cytokine production, and natural killer cell-mediated cytotoxicity, are associated with the biological process of lymphoma, consistent with those of recent publications. This study provides a new perspective for future research on the molecular mechanisms of lymphoma.