Cargando…
Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model
The term Annual killifish describes a short-lived and amazing group of vertebrates inhabiting temporary ponds exposed to an extremely variable environment during its short lifespan in South America and Africa, leading to the death of the entire adult population during the dry season. Austrolebias is...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251178/ https://www.ncbi.nlm.nih.gov/pubmed/35795213 http://dx.doi.org/10.3389/fgene.2022.903683 |
_version_ | 1784739979618942976 |
---|---|
author | García, Graciela Gutiérrez, Verónica Ríos, Néstor |
author_facet | García, Graciela Gutiérrez, Verónica Ríos, Néstor |
author_sort | García, Graciela |
collection | PubMed |
description | The term Annual killifish describes a short-lived and amazing group of vertebrates inhabiting temporary ponds exposed to an extremely variable environment during its short lifespan in South America and Africa, leading to the death of the entire adult population during the dry season. Austrolebias is a specious genus of the family Rivulidae, with ∼58 currently recognized species, extensively distributed in the temperate Neotropical region. Herein, we reviewed different aspects of the evolutionary biology with emphasis on the genome dynamic linked to the burst speciation process in this genus. Austrolebias constitutes an excellent model to study the genomic evolutionary processes underlying speciation events, since all the species of this genus analyzed so far share an unusually large genome size, with an average DNA content of 5.95 ± 0.45 picograms per diploid cell (mean C-value of about 2.98 pg). The drastic nuclear DNA–increasing would be associated with a considerable proportion of transposable elements (TEs) found in the Austrolebias genomes. The genomic proportion of the moderately repetitive DNA in the A. charrua genome represents approximately twice (45%) the amount of the repetitive components of the highly related sympatric and syntopic rivulinae taxon Cynopoecilus melanotaenia (25%), as well as from other rivulids and actinopterygian fish. These events could explain the great genome instability, the high genetic diversity, chromosome variability, as well as the morphological diversity in species of Austrolebias. Thus, species of this genus represent new model systems linking different evolutionary processes: drastic genome increase, massive TEs genomic representation, high chromosome instability, occurrence of natural hybridization between sister species, and burst speciation events. |
format | Online Article Text |
id | pubmed-9251178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92511782022-07-05 Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model García, Graciela Gutiérrez, Verónica Ríos, Néstor Front Genet Genetics The term Annual killifish describes a short-lived and amazing group of vertebrates inhabiting temporary ponds exposed to an extremely variable environment during its short lifespan in South America and Africa, leading to the death of the entire adult population during the dry season. Austrolebias is a specious genus of the family Rivulidae, with ∼58 currently recognized species, extensively distributed in the temperate Neotropical region. Herein, we reviewed different aspects of the evolutionary biology with emphasis on the genome dynamic linked to the burst speciation process in this genus. Austrolebias constitutes an excellent model to study the genomic evolutionary processes underlying speciation events, since all the species of this genus analyzed so far share an unusually large genome size, with an average DNA content of 5.95 ± 0.45 picograms per diploid cell (mean C-value of about 2.98 pg). The drastic nuclear DNA–increasing would be associated with a considerable proportion of transposable elements (TEs) found in the Austrolebias genomes. The genomic proportion of the moderately repetitive DNA in the A. charrua genome represents approximately twice (45%) the amount of the repetitive components of the highly related sympatric and syntopic rivulinae taxon Cynopoecilus melanotaenia (25%), as well as from other rivulids and actinopterygian fish. These events could explain the great genome instability, the high genetic diversity, chromosome variability, as well as the morphological diversity in species of Austrolebias. Thus, species of this genus represent new model systems linking different evolutionary processes: drastic genome increase, massive TEs genomic representation, high chromosome instability, occurrence of natural hybridization between sister species, and burst speciation events. Frontiers Media S.A. 2022-06-20 /pmc/articles/PMC9251178/ /pubmed/35795213 http://dx.doi.org/10.3389/fgene.2022.903683 Text en Copyright © 2022 García, Gutiérrez and Ríos. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Genetics García, Graciela Gutiérrez, Verónica Ríos, Néstor Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model |
title | Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model |
title_full | Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model |
title_fullStr | Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model |
title_full_unstemmed | Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model |
title_short | Living in Temporary Ponds Loading Giant Genomes: The Neotropical Annual Killifish Genus Austrolebias as New Outstanding Evolutionary Model |
title_sort | living in temporary ponds loading giant genomes: the neotropical annual killifish genus austrolebias as new outstanding evolutionary model |
topic | Genetics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251178/ https://www.ncbi.nlm.nih.gov/pubmed/35795213 http://dx.doi.org/10.3389/fgene.2022.903683 |
work_keys_str_mv | AT garciagraciela livingintemporarypondsloadinggiantgenomestheneotropicalannualkillifishgenusaustrolebiasasnewoutstandingevolutionarymodel AT gutierrezveronica livingintemporarypondsloadinggiantgenomestheneotropicalannualkillifishgenusaustrolebiasasnewoutstandingevolutionarymodel AT riosnestor livingintemporarypondsloadinggiantgenomestheneotropicalannualkillifishgenusaustrolebiasasnewoutstandingevolutionarymodel |