Cargando…
VCNet: Hybrid Deep Learning Model for Detection and Classification of Lung Carcinoma Using Chest Radiographs
Detection of malignant lung nodules from Computed Tomography (CT) images is a significant task for radiologists. But, it is time-consuming in nature. Despite numerous breakthroughs in studies on the application of deep learning models for the identification of lung cancer, researchers and doctors st...
Autores principales: | Tandon, Ritu, Agrawal, Shweta, Chang, Arthur, Band, Shahab S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251197/ https://www.ncbi.nlm.nih.gov/pubmed/35795700 http://dx.doi.org/10.3389/fpubh.2022.894920 |
Ejemplares similares
-
A Neural Network and Optimization Based Lung Cancer Detection System in CT Images
por: Venkatesh, Chapala, et al.
Publicado: (2022) -
Exploring transfer learning in chest radiographic images within the interplay between COVID-19 and diabetes
por: Shoaib, Muhammad, et al.
Publicado: (2023) -
Comparing different deep learning architectures for classification of chest radiographs
por: Bressem, Keno K., et al.
Publicado: (2020) -
Deep learning for classification of pediatric chest radiographs by WHO’s standardized methodology
por: Chen, Yiyun, et al.
Publicado: (2021) -
Hybrid HCNN-KNN Model Enhances Age Estimation Accuracy in Orthopantomography
por: Sharifonnasabi, Fatemeh, et al.
Publicado: (2022)