Cargando…
TextNetTopics: Text Classification Based Word Grouping as Topics and Topics’ Scoring
Medical document classification is one of the active research problems and the most challenging within the text classification domain. Medical datasets often contain massive feature sets where many features are considered irrelevant, redundant, and add noise, thus, reducing the classification perfor...
Autores principales: | Yousef, Malik, Voskergian, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251539/ https://www.ncbi.nlm.nih.gov/pubmed/35795215 http://dx.doi.org/10.3389/fgene.2022.893378 |
Ejemplares similares
-
TextNetTopics Pro, a topic model-based text classification for short text by integration of semantic and document-topic distribution information
por: Voskergian, Daniel, et al.
Publicado: (2023) -
Investigating the Efficient Use of Word Embedding with Neural-Topic Models for Interpretable Topics from Short Texts
por: Murakami, Riki, et al.
Publicado: (2022) -
Topic Modeling for Interpretable Text Classification From EHRs
por: Rijcken, Emil, et al.
Publicado: (2022) -
A Topic Recognition Method of News Text Based on Word Embedding Enhancement
por: Du, Qiming, et al.
Publicado: (2022) -
Topic Analysis and Mapping of Tuberculosis Research Using Text Mining and Co-Word Analysis
por: Dastani, Meisam, et al.
Publicado: (2022)