Cargando…

Oriented self-assembly of metal–organic frameworks driven by photoinitiated monomer polymerization

The self-assembly of metal–organic frameworks (MOFs) is crucial for the functional design of materials, including energy storage materials, catalysts, selective separation materials and optical crystals. However, oriented self-assembly of MOFs is still a challenge. Herein, we propose a novel strateg...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Fuqiang, Zhang, Zhihui, Zeng, Qingqi, Zhang, Liying, Zhang, Xuemin, Wang, Tieqiang, Fu, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251646/
https://www.ncbi.nlm.nih.gov/pubmed/35865556
http://dx.doi.org/10.1039/d2ra03161b
Descripción
Sumario:The self-assembly of metal–organic frameworks (MOFs) is crucial for the functional design of materials, including energy storage materials, catalysts, selective separation materials and optical crystals. However, oriented self-assembly of MOFs is still a challenge. Herein, we propose a novel strategy to drive oriented self-assembly of MOF polyhedral particles at the water–liquid interface by photoinitiated monomer polymerization. The MOF polyhedral particles self-assemble into ordered close-packed structures with obvious orientation in the polymer film, and the orientation is determined by the casting solvent on the water surface. The prepared large-area MOF polymer films show a Janus structure, containing a MOF monolayer and a polymer layer, and can be easily transferred to a variety of substrates. In addition, mixed MOF particles with different sizes and morphologies can also be assembled by this method. This novel method can be foreseen to provide a powerful driving force for the development of MOF self-assembly and to create more possibilities for utilizing the anisotropic properties of MOFs.