Cargando…

Luminance dependency of perceived color shift after color contrast adaptation caused by higher-order color channels

Color adaptation is a phenomenon in which, after prolonged exposure to a specific color (i.e. adaptation color), the perceived color shifts to approximately the opposite color direction of the adaptation color. Color adaptation is strongly related to sensitivity changes in photoreceptors, such as vo...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagai, Takehiro, Kakuta, Kana, Yamauchi, Yasuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251816/
https://www.ncbi.nlm.nih.gov/pubmed/35762942
http://dx.doi.org/10.1167/jov.22.7.8
Descripción
Sumario:Color adaptation is a phenomenon in which, after prolonged exposure to a specific color (i.e. adaptation color), the perceived color shifts to approximately the opposite color direction of the adaptation color. Color adaptation is strongly related to sensitivity changes in photoreceptors, such as von Kries adaptation and cone-opponent mechanisms. On the other hand, the perceptual contrast of colors (e.g. perceptual saturation of the red-green direction) decreases after adaptation to a stimulus with spatial and/or temporal color modulation along the color direction. This phenomenon is referred to as color contrast adaptation. Color contrast adaptation has been used to investigate the representation of colors in the visual system. In the present study, we measured color perception after color contrast adaptation to stimuli with temporal color modulations along complicated color loci in a luminance-chromaticity plane. We found that, after the observers adapted to color modulations with different chromaticities at higher, medium, and lower luminance (e.g. temporal alternations among red, green, and red, each at a different luminance level), the chromaticity corresponding to perceptual achromaticity (the achromatic point) shifted to the same color direction as the adaptation chromaticity in each test stimulus luminance. In contrast, this luminance dependence of the achromatic point shift was not observed after adaptation to color modulations with more complex luminance-chromaticity correspondences (e.g. alternating red, green, red, green, and red, at five luminance levels, respectively). In addition, the occurrence or nonoccurrence of the luminance-dependent achromatic point shift was qualitatively predicted using a noncardinal model composed of channels preferring intermediate color directions between the cardinal chromaticity and luminance axes. These results suggest that the noncardinal channels are involved in the luminance-dependent perceived color shift after adaptation.