Cargando…
Abiotic and biotic responses to woody debris additions in restored old fields in a multi‐site Before‐After‐Control‐Impact experiment
Ecological restoration of former agricultural land can improve soil conditions, recover native vegetation, and provide fauna habitat. However, restoration benefits are often associated with time lags, as many attributes, such as leaf litter and coarse woody debris, need time to accumulate. Here, we...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251846/ https://www.ncbi.nlm.nih.gov/pubmed/35813918 http://dx.doi.org/10.1002/ece3.9058 |
_version_ | 1784740119216914432 |
---|---|
author | Parkhurst, Tina Prober, Suzanne M. Farrell, Mark Standish, Rachel J. |
author_facet | Parkhurst, Tina Prober, Suzanne M. Farrell, Mark Standish, Rachel J. |
author_sort | Parkhurst, Tina |
collection | PubMed |
description | Ecological restoration of former agricultural land can improve soil conditions, recover native vegetation, and provide fauna habitat. However, restoration benefits are often associated with time lags, as many attributes, such as leaf litter and coarse woody debris, need time to accumulate. Here, we experimentally tested whether adding mulch and logs to restoration sites in semi‐arid Western Australia can accelerate restoration benefits. All sites had been cropped and then planted with native trees and shrubs (i.e., Eucalyptus, Melaleuca, and Acacia spp.) 10 years prior to our experiment, to re‐establish the original temperate eucalypt woodland vegetation community. We used a Multi‐site Before‐After‐Control‐Impact (MBACI) design to test the effects on 30 abiotic and biotic response variables over a period of 2 years. Of the 30 response variables, a significant effect was found for just four variables: volumetric water content, decomposition, native herbaceous species cover and species richness of disturbance specialist ants. Mulch addition had a positive effect on soil moisture when compared to controls but suppressed growth of native (but not exotic) herbaceous plants. On plots with log additions, decomposition rates decreased, and species richness of disturbance specialist ants increased. However, we found no effect on total species richness and abundance of other ant species groups. The benefit of mulch to soil moisture was offset by its disbenefit to native herbs in our study. Given time, logs may also provide habitat for ant species that prefer concealed habitats. Indeed, benefits to other soil biophysical properties, vegetation, and ant fauna may require longer time frames to be detected. Further research is needed to determine whether the type, quantity, and context of mulch and log additions may improve their utility for old field restoration and whether effects on native herbs are correlated with idiosyncratic climatic conditions. |
format | Online Article Text |
id | pubmed-9251846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92518462022-07-08 Abiotic and biotic responses to woody debris additions in restored old fields in a multi‐site Before‐After‐Control‐Impact experiment Parkhurst, Tina Prober, Suzanne M. Farrell, Mark Standish, Rachel J. Ecol Evol Research Articles Ecological restoration of former agricultural land can improve soil conditions, recover native vegetation, and provide fauna habitat. However, restoration benefits are often associated with time lags, as many attributes, such as leaf litter and coarse woody debris, need time to accumulate. Here, we experimentally tested whether adding mulch and logs to restoration sites in semi‐arid Western Australia can accelerate restoration benefits. All sites had been cropped and then planted with native trees and shrubs (i.e., Eucalyptus, Melaleuca, and Acacia spp.) 10 years prior to our experiment, to re‐establish the original temperate eucalypt woodland vegetation community. We used a Multi‐site Before‐After‐Control‐Impact (MBACI) design to test the effects on 30 abiotic and biotic response variables over a period of 2 years. Of the 30 response variables, a significant effect was found for just four variables: volumetric water content, decomposition, native herbaceous species cover and species richness of disturbance specialist ants. Mulch addition had a positive effect on soil moisture when compared to controls but suppressed growth of native (but not exotic) herbaceous plants. On plots with log additions, decomposition rates decreased, and species richness of disturbance specialist ants increased. However, we found no effect on total species richness and abundance of other ant species groups. The benefit of mulch to soil moisture was offset by its disbenefit to native herbs in our study. Given time, logs may also provide habitat for ant species that prefer concealed habitats. Indeed, benefits to other soil biophysical properties, vegetation, and ant fauna may require longer time frames to be detected. Further research is needed to determine whether the type, quantity, and context of mulch and log additions may improve their utility for old field restoration and whether effects on native herbs are correlated with idiosyncratic climatic conditions. John Wiley and Sons Inc. 2022-07-04 /pmc/articles/PMC9251846/ /pubmed/35813918 http://dx.doi.org/10.1002/ece3.9058 Text en © 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Parkhurst, Tina Prober, Suzanne M. Farrell, Mark Standish, Rachel J. Abiotic and biotic responses to woody debris additions in restored old fields in a multi‐site Before‐After‐Control‐Impact experiment |
title | Abiotic and biotic responses to woody debris additions in restored old fields in a multi‐site Before‐After‐Control‐Impact experiment |
title_full | Abiotic and biotic responses to woody debris additions in restored old fields in a multi‐site Before‐After‐Control‐Impact experiment |
title_fullStr | Abiotic and biotic responses to woody debris additions in restored old fields in a multi‐site Before‐After‐Control‐Impact experiment |
title_full_unstemmed | Abiotic and biotic responses to woody debris additions in restored old fields in a multi‐site Before‐After‐Control‐Impact experiment |
title_short | Abiotic and biotic responses to woody debris additions in restored old fields in a multi‐site Before‐After‐Control‐Impact experiment |
title_sort | abiotic and biotic responses to woody debris additions in restored old fields in a multi‐site before‐after‐control‐impact experiment |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9251846/ https://www.ncbi.nlm.nih.gov/pubmed/35813918 http://dx.doi.org/10.1002/ece3.9058 |
work_keys_str_mv | AT parkhursttina abioticandbioticresponsestowoodydebrisadditionsinrestoredoldfieldsinamultisitebeforeaftercontrolimpactexperiment AT probersuzannem abioticandbioticresponsestowoodydebrisadditionsinrestoredoldfieldsinamultisitebeforeaftercontrolimpactexperiment AT farrellmark abioticandbioticresponsestowoodydebrisadditionsinrestoredoldfieldsinamultisitebeforeaftercontrolimpactexperiment AT standishrachelj abioticandbioticresponsestowoodydebrisadditionsinrestoredoldfieldsinamultisitebeforeaftercontrolimpactexperiment |