Cargando…

Role of Lateral Inhibition on Visual Number Sense

Newborn animals, such as 4-month-old infants, 4-day-old chicks, and 1-day-old guppies, exhibit sensitivity to an approximate number of items in the visual array. These findings are often interpreted as evidence for an innate “number sense.” However, number sense is typically investigated using expli...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yiwei, Chen, Huanwen, Wang, Yijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252291/
https://www.ncbi.nlm.nih.gov/pubmed/35795083
http://dx.doi.org/10.3389/fncom.2022.810448
Descripción
Sumario:Newborn animals, such as 4-month-old infants, 4-day-old chicks, and 1-day-old guppies, exhibit sensitivity to an approximate number of items in the visual array. These findings are often interpreted as evidence for an innate “number sense.” However, number sense is typically investigated using explicit behavioral tasks, which require a form of calibration (e.g., habituation or reward-based training) in experimental studies. Therefore, the generation of number sense may be the result of calibration. We built a number-sense neural network model on the basis of lateral inhibition to explore whether animals demonstrate an innate “number sense” and determine important factors affecting this competence. The proposed model can reproduce size and distance effects of output responses of number-selective neurons when network connection weights are set randomly without an adjustment. Results showed that number sense can be produced under the influence of lateral inhibition, which is one of the fundamental mechanisms of the nervous system, and independent of learning.