Cargando…
The Impact of Pharmacogenetics on Pharmacokinetics and Pharmacodynamics in Neonates and Infants: A Systematic Review
In neonates, pharmacogenetics has an additional layer of complexity. This is because in addition to genetic variability in genes that code for proteins relevant to clinical pharmacology, there are rapidly maturational changes in these proteins. Consequently, pharmacotherapy in neonates has unique ch...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252316/ https://www.ncbi.nlm.nih.gov/pubmed/35795337 http://dx.doi.org/10.2147/PGPM.S350205 |
_version_ | 1784740236396331008 |
---|---|
author | Yalçin, Nadir Flint, Robert B van Schaik, Ron H N Simons, Sinno H P Allegaert, Karel |
author_facet | Yalçin, Nadir Flint, Robert B van Schaik, Ron H N Simons, Sinno H P Allegaert, Karel |
author_sort | Yalçin, Nadir |
collection | PubMed |
description | In neonates, pharmacogenetics has an additional layer of complexity. This is because in addition to genetic variability in genes that code for proteins relevant to clinical pharmacology, there are rapidly maturational changes in these proteins. Consequently, pharmacotherapy in neonates has unique challenges. To provide a contemporary overview on pharmacogenetics in neonates, we conducted a systematic review to identify, describe and quantify the impact of pharmacogenetics on pharmacokinetics and -dynamics in neonates and infants (PROSPERO, CRD42022302029). The search was performed in Medline, Embase, Web of Science and Cochrane, and was extended by a PubMed search on the ‘top 100 Medicines’ (medicine + newborn/infant + pharmacogen*) prescribed to neonates. Following study selection (including data in infants, PGx related) and quality assessment (Newcastle–Ottawa scale, Joanna Briggs Institute tool), 55/789 records were retained. Retained records relate to metabolizing enzymes involved in phase I [cytochrome P450 (CYP1A2, CYP2A6, CYP2B6, CYP2C8/C9/C18, CYP2C19, CYP2D6, CYP3A5, CYP2E1)], phase II [glutathione-S-transferases, N-acetyl transferases, UDP-glucuronosyl-transferase], transporters [ATP-binding cassette transporters, organic cation transporters], or receptor/post-receptor mechanisms [opioid related receptor and post-receptor mechanisms, tumor necrosis factor, mitogen-activated protein kinase 8, vitamin binding protein diplotypes, corticotrophin-releasing hormone receptor-1, nuclear receptor subfamily-1, vitamin K epoxide reductase complex-1, and angiotensin converting enzyme variants]. Based on the available overview, we conclude that the majority of reported pharmacogenetic studies explore and extrapolate observations already described in older populations. Researchers commonly try to quantify the impact of these polymorphisms in small datasets of neonates or infants. In a next step, pharmacogenetic studies in neonatal life should go beyond confirmation of these associations and explore the impact of pharmacogenetics as a covariate limited to maturation of neonatal life (ie, fetal malformations, breastfeeding or clinical syndromes). The challenge is to identify the specific factors, genetic and non-genetic, that contribute to the best benefit/risk balance. |
format | Online Article Text |
id | pubmed-9252316 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-92523162022-07-05 The Impact of Pharmacogenetics on Pharmacokinetics and Pharmacodynamics in Neonates and Infants: A Systematic Review Yalçin, Nadir Flint, Robert B van Schaik, Ron H N Simons, Sinno H P Allegaert, Karel Pharmgenomics Pers Med Review In neonates, pharmacogenetics has an additional layer of complexity. This is because in addition to genetic variability in genes that code for proteins relevant to clinical pharmacology, there are rapidly maturational changes in these proteins. Consequently, pharmacotherapy in neonates has unique challenges. To provide a contemporary overview on pharmacogenetics in neonates, we conducted a systematic review to identify, describe and quantify the impact of pharmacogenetics on pharmacokinetics and -dynamics in neonates and infants (PROSPERO, CRD42022302029). The search was performed in Medline, Embase, Web of Science and Cochrane, and was extended by a PubMed search on the ‘top 100 Medicines’ (medicine + newborn/infant + pharmacogen*) prescribed to neonates. Following study selection (including data in infants, PGx related) and quality assessment (Newcastle–Ottawa scale, Joanna Briggs Institute tool), 55/789 records were retained. Retained records relate to metabolizing enzymes involved in phase I [cytochrome P450 (CYP1A2, CYP2A6, CYP2B6, CYP2C8/C9/C18, CYP2C19, CYP2D6, CYP3A5, CYP2E1)], phase II [glutathione-S-transferases, N-acetyl transferases, UDP-glucuronosyl-transferase], transporters [ATP-binding cassette transporters, organic cation transporters], or receptor/post-receptor mechanisms [opioid related receptor and post-receptor mechanisms, tumor necrosis factor, mitogen-activated protein kinase 8, vitamin binding protein diplotypes, corticotrophin-releasing hormone receptor-1, nuclear receptor subfamily-1, vitamin K epoxide reductase complex-1, and angiotensin converting enzyme variants]. Based on the available overview, we conclude that the majority of reported pharmacogenetic studies explore and extrapolate observations already described in older populations. Researchers commonly try to quantify the impact of these polymorphisms in small datasets of neonates or infants. In a next step, pharmacogenetic studies in neonatal life should go beyond confirmation of these associations and explore the impact of pharmacogenetics as a covariate limited to maturation of neonatal life (ie, fetal malformations, breastfeeding or clinical syndromes). The challenge is to identify the specific factors, genetic and non-genetic, that contribute to the best benefit/risk balance. Dove 2022-06-30 /pmc/articles/PMC9252316/ /pubmed/35795337 http://dx.doi.org/10.2147/PGPM.S350205 Text en © 2022 Yalçin et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Review Yalçin, Nadir Flint, Robert B van Schaik, Ron H N Simons, Sinno H P Allegaert, Karel The Impact of Pharmacogenetics on Pharmacokinetics and Pharmacodynamics in Neonates and Infants: A Systematic Review |
title | The Impact of Pharmacogenetics on Pharmacokinetics and Pharmacodynamics in Neonates and Infants: A Systematic Review |
title_full | The Impact of Pharmacogenetics on Pharmacokinetics and Pharmacodynamics in Neonates and Infants: A Systematic Review |
title_fullStr | The Impact of Pharmacogenetics on Pharmacokinetics and Pharmacodynamics in Neonates and Infants: A Systematic Review |
title_full_unstemmed | The Impact of Pharmacogenetics on Pharmacokinetics and Pharmacodynamics in Neonates and Infants: A Systematic Review |
title_short | The Impact of Pharmacogenetics on Pharmacokinetics and Pharmacodynamics in Neonates and Infants: A Systematic Review |
title_sort | impact of pharmacogenetics on pharmacokinetics and pharmacodynamics in neonates and infants: a systematic review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252316/ https://www.ncbi.nlm.nih.gov/pubmed/35795337 http://dx.doi.org/10.2147/PGPM.S350205 |
work_keys_str_mv | AT yalcinnadir theimpactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview AT flintrobertb theimpactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview AT vanschaikronhn theimpactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview AT simonssinnohp theimpactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview AT allegaertkarel theimpactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview AT yalcinnadir impactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview AT flintrobertb impactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview AT vanschaikronhn impactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview AT simonssinnohp impactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview AT allegaertkarel impactofpharmacogeneticsonpharmacokineticsandpharmacodynamicsinneonatesandinfantsasystematicreview |