Cargando…
Deep CNN-LSTM With Self-Attention Model for Human Activity Recognition Using Wearable Sensor
Human Activity Recognition (HAR) systems are devised for continuously observing human behavior - primarily in the fields of environmental compatibility, sports injury detection, senior care, rehabilitation, entertainment, and the surveillance in intelligent home settings. Inertial sensors, e.g., acc...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252338/ https://www.ncbi.nlm.nih.gov/pubmed/35795873 http://dx.doi.org/10.1109/JTEHM.2022.3177710 |
Ejemplares similares
-
A wearable-based sports health monitoring system using CNN and LSTM with self-attentions
por: Wang, Tao Yuhuan, et al.
Publicado: (2023) -
Multi-Sensor Data Fusion and CNN-LSTM Model for Human Activity Recognition System
por: Zhou, Haiyang, et al.
Publicado: (2023) -
Attention Based CNN-ConvLSTM for Pedestrian Attribute Recognition
por: Li, Yang, et al.
Publicado: (2020) -
A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors
por: Liu, Kun, et al.
Publicado: (2023) -
Self-Attention-Based Deep Convolution LSTM Framework for Sensor-Based Badminton Activity Recognition
por: Deng, Jingyang, et al.
Publicado: (2023)