Cargando…
Self-evolving vision transformer for chest X-ray diagnosis through knowledge distillation
Although deep learning-based computer-aided diagnosis systems have recently achieved expert-level performance, developing a robust model requires large, high-quality data with annotations that are expensive to obtain. This situation poses a conundrum that annually-collected chest x-rays cannot be ut...
Autores principales: | Park, Sangjoon, Kim, Gwanghyun, Oh, Yujin, Seo, Joon Beom, Lee, Sang Min, Kim, Jin Hwan, Moon, Sungjun, Lim, Jae-Kwang, Park, Chang Min, Ye, Jong Chul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252561/ https://www.ncbi.nlm.nih.gov/pubmed/35789159 http://dx.doi.org/10.1038/s41467-022-31514-x |
Ejemplares similares
-
Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification
por: Park, Sangjoon, et al.
Publicado: (2022) -
PET: Parameter-efficient Knowledge Distillation on Transformer
por: Jeon, Hyojin, et al.
Publicado: (2023) -
Explainable Vision Transformers and Radiomics for COVID-19 Detection in Chest X-rays
por: Chetoui, Mohamed, et al.
Publicado: (2022) -
Implementation of Chest X-ray Observation Report Entry System
por: Seo, Suk-Tae, et al.
Publicado: (2010) -
CheSS: Chest X-Ray Pre-trained Model via Self-supervised Contrastive Learning
por: Cho, Kyungjin, et al.
Publicado: (2023)