Cargando…
Improved CEEMDAN, GA, and SVR Model for Oil Price Forecasting
Accurate prediction of crude oil prices (COPs) is a challenge for academia and industry. Therefore, the present research developed a new CEEMDAN-GA-SVR hybrid model to predict COPs, incorporating complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), a genetic algorithm (GA),...
Autores principales: | Lu, Yichun, Luo, Junyin, Cui, Yiwen, He, Zhengbin, Xia, Fengchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252654/ https://www.ncbi.nlm.nih.gov/pubmed/35795536 http://dx.doi.org/10.1155/2022/3741370 |
Ejemplares similares
-
Retracted: Improved CEEMDAN, GA, and SVR Model for Oil Price Forecasting
por: Environmental and Public Health, Journal of
Publicado: (2023) -
A Novel Forecasting Approach by the GA-SVR-GRNN Hybrid Deep Learning Algorithm for Oil Future Prices
por: Wang, Liang, et al.
Publicado: (2022) -
Improved CEEMDAN and PSO-SVR Modeling for Near-Infrared Noninvasive Glucose Detection
por: Li, Xiaoli, et al.
Publicado: (2016) -
Short-term power load forecasting based on the CEEMDAN-TCN-ESN model
por: Huang, Jiacheng, et al.
Publicado: (2023) -
Forecasting the price of crude oil
por: Bollapragada, Ramesh, et al.
Publicado: (2021)