Cargando…
Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
In recent years, deep learning has been widely used in hyperspectral image (HSI) classification and has shown good capabilities. Particularly, the use of convolutional neural network (CNN) in HSI classification has achieved attractive performance. However, HSI contains a lot of redundant information...
Autores principales: | Dang, Lanxue, Weng, Libo, Dong, Weichuan, Li, Shenshen, Hou, Yane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252667/ https://www.ncbi.nlm.nih.gov/pubmed/35795754 http://dx.doi.org/10.1155/2022/7071485 |
Ejemplares similares
-
Double-branch feature fusion transformer for hyperspectral image classification
por: Dang, Lanxue, et al.
Publicado: (2023) -
Spatial–Spectral Feature Refinement for Hyperspectral Image Classification Based on Attention-Dense 3D-2D-CNN
por: Zhang, Jin, et al.
Publicado: (2020) -
Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification
por: Cheng, Shuli, et al.
Publicado: (2021) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
Robust Spatial–Spectral Squeeze–Excitation AdaBound Dense Network (SE-AB-Densenet) for Hyperspectral Image Classification
por: Munishamaiaha, Kavitha, et al.
Publicado: (2022)