Cargando…
NetSurfP-3.0: accurate and fast prediction of protein structural features by protein language models and deep learning
Recent advances in machine learning and natural language processing have made it possible to profoundly advance our ability to accurately predict protein structures and their functions. While such improvements are significantly impacting the fields of biology and biotechnology at large, such methods...
Autores principales: | Høie, Magnus Haraldson, Kiehl, Erik Nicolas, Petersen, Bent, Nielsen, Morten, Winther, Ole, Nielsen, Henrik, Hallgren, Jeppe, Marcatili, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252760/ https://www.ncbi.nlm.nih.gov/pubmed/35648435 http://dx.doi.org/10.1093/nar/gkac439 |
Ejemplares similares
-
BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes
por: Jespersen, Martin Closter, et al.
Publicado: (2017) -
DeepLoc 2.0: multi-label subcellular localization prediction using protein language models
por: Thumuluri, Vineet, et al.
Publicado: (2022) -
LYRA, a webserver for lymphocyte receptor structural modeling
por: Klausen, Michael Schantz, et al.
Publicado: (2015) -
NetGO 3.0: Protein Language Model Improves Large-scale Functional Annotations
por: Wang, Shaojun, et al.
Publicado: (2023) -
NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data
por: Reynisson, Birkir, et al.
Publicado: (2020)