Cargando…
Unenhanced abdominal low-dose CT reconstructed with deep learning-based image reconstruction: image quality and anatomical structure depiction
PURPOSE: To evaluate the utility of deep learning-based image reconstruction (DLIR) algorithm in unenhanced abdominal low-dose CT (LDCT). MATERIALS AND METHODS: Two patient groups were included in this prospective study: 58 consecutive patients who underwent unenhanced abdominal standard-dose CT rec...
Autores principales: | Kaga, Tetsuro, Noda, Yoshifumi, Mori, Takayuki, Kawai, Nobuyuki, Miyoshi, Toshiharu, Hyodo, Fuminori, Kato, Hiroki, Matsuo, Masayuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252942/ https://www.ncbi.nlm.nih.gov/pubmed/35286578 http://dx.doi.org/10.1007/s11604-022-01259-0 |
Ejemplares similares
-
Comparison of image quality, arterial depiction, and radiation dose between two rapid kVp-switching dual-energy CT scanners in CT angiography at 40-keV
por: Kaga, Tetsuro, et al.
Publicado: (2023) -
Non-invasive regional cerebral blood flow quantification in the 123I-IMP autoradiography using artificial neural network
por: Kaga, Tetsuro, et al.
Publicado: (2023) -
Imaging findings of malignant skin tumors: radiological–pathological correlation
por: Kawaguchi, Masaya, et al.
Publicado: (2022) -
Prediction of overall survival in patients with pancreatic ductal adenocarcinoma: histogram analysis of ADC value and correlation with pathological intratumoral necrosis
por: Noda, Yoshifumi, et al.
Publicado: (2022) -
Effect of computed tomography value error on dose calculation in adaptive radiotherapy with Elekta X‐ray volume imaging cone beam computed tomography
por: Taniguchi, Takuya, et al.
Publicado: (2021)