Cargando…

Protein kinase Ime2 is associated with mycelial growth, conidiation, osmoregulation, and pathogenicity in Fusarium oxysporum

Fusarium oxysporum f.sp. niveum is one of the most serious diseases impairing watermelon yield and quality. Inducer of meiosis 2 (Ime2) is the founding member of a family of serine/threonine protein kinases and plays important roles in yeasts and other filamentous fungi. In this study, we analyzed t...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Jiling, Zhang, Yi, Yang, Ke, Tang, Yanying, Wei, Lin, Liu, Erming, Liang, Zhihuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252944/
https://www.ncbi.nlm.nih.gov/pubmed/35788908
http://dx.doi.org/10.1007/s00203-022-02964-0
Descripción
Sumario:Fusarium oxysporum f.sp. niveum is one of the most serious diseases impairing watermelon yield and quality. Inducer of meiosis 2 (Ime2) is the founding member of a family of serine/threonine protein kinases and plays important roles in yeasts and other filamentous fungi. In this study, we analyzed the functions of FoIme2, the ortholog of Saccharomyces cerevisiae Ime2 in F. oxysporum f.sp. niveum. The FoIme2-deleted mutants exhibited obvious morphological abnormalities, including slower vegetative growth, more branches in the edge hyphae and a reduction in conidia production. Compared to the wild type, the mutants were hypersensitive to the osmotic stressor NaCl but were more insensitive to the membrane stressor SDS. The deletion of FoIme2 also caused a reduction in pathogenicity. Transcriptional analysis revealed that FoIme2 acts downstream of FoOpy2 which is an upstream sensor of the MAPK kinase cascade. These results indicate that FoIme2 is important in the development and pathogenicity of F. oxysporum, and provide new insight for the analysis of the pathogenic mechanism of F. oxysporum.