Cargando…
Anomaly detection in chest (18)F-FDG PET/CT by Bayesian deep learning
PURPOSE: To develop an anomaly detection system in PET/CT with the tracer (18)F-fluorodeoxyglucose (FDG) that requires only normal PET/CT images for training and can detect abnormal FDG uptake at any location in the chest region. MATERIALS AND METHODS: We trained our model based on a Bayesian deep l...
Autores principales: | Nakao, Takahiro, Hanaoka, Shouhei, Nomura, Yukihiro, Hayashi, Naoto, Abe, Osamu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252947/ https://www.ncbi.nlm.nih.gov/pubmed/35094221 http://dx.doi.org/10.1007/s11604-022-01249-2 |
Ejemplares similares
-
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021) -
Significance of FDG–PET standardized uptake values in predicting thyroid disease
por: Kikuchi, Tomohiro, et al.
Publicado: (2022) -
On the Simulation of Ultra-Sparse-View and Ultra-Low-Dose Computed Tomography with Maximum a Posteriori Reconstruction Using a Progressive Flow-Based Deep Generative Model
por: Shibata, Hisaichi, et al.
Publicado: (2022) -
Automatic detection of actionable radiology reports using bidirectional encoder representations from transformers
por: Nakamura, Yuta, et al.
Publicado: (2021) -
Characterization of Brain Volume Changes in Aging Individuals With Normal Cognition Using Serial Magnetic Resonance Imaging
por: Fujita, Shohei, et al.
Publicado: (2023)