Cargando…
An ML prediction model based on clinical parameters and automated CT scan features for COVID-19 patients
Outcome prediction for individual patient groups is of paramount importance in terms of selection of appropriate therapeutic options, risk communication to patients and families, and allocating resource through optimum triage. This has become even more necessary in the context of the current COVID-1...
Autores principales: | Sinha, Abhishar, Joshi, Swati Purohit, Das, Purnendu Sekhar, Jana, Soumya, Sarkar, Rahuldeb |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252998/ https://www.ncbi.nlm.nih.gov/pubmed/35788637 http://dx.doi.org/10.1038/s41598-022-15327-y |
Ejemplares similares
-
BioAutoML: automated feature engineering and metalearning to predict noncoding RNAs in bacteria
por: Bonidia, Robson P, et al.
Publicado: (2022) -
The Effect of CT Scan Parameters on the Measurement of CT Radiomic Features: A Lung Nodule Phantom Study
por: Kim, Young Jae, et al.
Publicado: (2019) -
Automated detection of COVID-19 from CT scan using convolutional neural network
por: Mishra, Narendra Kumar, et al.
Publicado: (2021) -
Safety and efficacy of polymyxin B in multidrug resistant Gram-negative severe sepsis and septic shock
por: Ramasubban, Suresh, et al.
Publicado: (2008) -
ML-Based Texture and Wavelet Features Extraction Technique to Predict Gastric Mesothelioma Cancer
por: Garg, Neeraj, et al.
Publicado: (2022)