Cargando…

Machine learning predicts clinically significant health related quality of life improvement after sensorimotor rehabilitation interventions in chronic stroke

Health related quality of life (HRQOL) reflects individuals perceived of wellness in health domains and is often deteriorated after stroke. Precise prediction of HRQOL changes after rehabilitation interventions is critical for optimizing stroke rehabilitation efficiency and efficacy. Machine learnin...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Wan-Wen, Hsieh, Yu-Wei, Lee, Tsong-Hai, Chen, Chia-ling, Wu, Ching-yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253044/
https://www.ncbi.nlm.nih.gov/pubmed/35787657
http://dx.doi.org/10.1038/s41598-022-14986-1
Descripción
Sumario:Health related quality of life (HRQOL) reflects individuals perceived of wellness in health domains and is often deteriorated after stroke. Precise prediction of HRQOL changes after rehabilitation interventions is critical for optimizing stroke rehabilitation efficiency and efficacy. Machine learning (ML) has become a promising outcome prediction approach because of its high accuracy and easiness to use. Incorporating ML models into rehabilitation practice may facilitate efficient and accurate clinical decision making. Therefore, this study aimed to determine if ML algorithms could accurately predict clinically significant HRQOL improvements after stroke sensorimotor rehabilitation interventions and identify important predictors. Five ML algorithms including the random forest (RF), k-nearest neighbors (KNN), artificial neural network, support vector machine and logistic regression were used. Datasets from 132 people with chronic stroke were included. The Stroke Impact Scale was used for assessing multi-dimensional and global self-perceived HRQOL. Potential predictors included personal characteristics and baseline cognitive/motor/sensory/functional/HRQOL attributes. Data were divided into training and test sets. Tenfold cross-validation procedure with the training data set was used for developing models. The test set was used for determining model performance. Results revealed that RF was effective at predicting multidimensional HRQOL (accuracy: 85%; area under the receiver operating characteristic curve, AUC-ROC: 0.86) and global perceived recovery (accuracy: 80%; AUC-ROC: 0.75), and KNN was effective at predicting global perceived recovery (accuracy: 82.5%; AUC-ROC: 0.76). Age/gender, baseline HRQOL, wrist/hand muscle function, arm movement efficiency and sensory function were identified as crucial predictors. Our study indicated that RF and KNN outperformed the other three models on predicting HRQOL recovery after sensorimotor rehabilitation in stroke patients and could be considered for future clinical application.