Cargando…
Machine learning predicts clinically significant health related quality of life improvement after sensorimotor rehabilitation interventions in chronic stroke
Health related quality of life (HRQOL) reflects individuals perceived of wellness in health domains and is often deteriorated after stroke. Precise prediction of HRQOL changes after rehabilitation interventions is critical for optimizing stroke rehabilitation efficiency and efficacy. Machine learnin...
Autores principales: | Liao, Wan-Wen, Hsieh, Yu-Wei, Lee, Tsong-Hai, Chen, Chia-ling, Wu, Ching-yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253044/ https://www.ncbi.nlm.nih.gov/pubmed/35787657 http://dx.doi.org/10.1038/s41598-022-14986-1 |
Ejemplares similares
-
Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches
por: Thakkar, Hiren Kumar, et al.
Publicado: (2020) -
Potential predictors for health-related quality of life in stroke patients undergoing inpatient rehabilitation
por: Chen, Chien-Min, et al.
Publicado: (2015) -
Assessing the Stroke-Specific Quality of Life for Outcome Measurement in Stroke Rehabilitation: Minimal Detectable Change and Clinically Important Difference
por: Lin, Keh-chung, et al.
Publicado: (2011) -
The Reliability and Predictive Ability of a Biomarker of Oxidative DNA Damage on Functional Outcomes after Stroke Rehabilitation
por: Hsieh, Yu-Wei, et al.
Publicado: (2014) -
Classifying and tracking rehabilitation interventions through machine-learning algorithms in individuals with stroke
por: Espinoza Bernal, Victor C, et al.
Publicado: (2021)