Cargando…
Development and implementation of patient-level prediction models of end-stage renal disease for type 2 diabetes patients using fast healthcare interoperability resources
This study aimed to develop a model to predict the 5-year risk of developing end-stage renal disease (ESRD) in patients with type 2 diabetes mellitus (T2DM) using machine learning (ML). It also aimed to implement the developed algorithms into electronic medical records (EMR) system using Health Leve...
Autores principales: | Wang, San, Han, Jieun, Jung, Se Young, Oh, Tae Jung, Yao, Sen, Lim, Sanghee, Hwang, Hee, Lee, Ho-Young, Lee, Haeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253099/ https://www.ncbi.nlm.nih.gov/pubmed/35789173 http://dx.doi.org/10.1038/s41598-022-15036-6 |
Ejemplares similares
-
Interoperability with multiple Fast Healthcare Interoperability Resources (FHIR(®)) profiles and versions
por: Kramer, Mark A, et al.
Publicado: (2023) -
Fast Healthcare Interoperability Resources (FHIR) for Interoperability in Health Research: Systematic Review
por: Vorisek, Carina Nina, et al.
Publicado: (2022) -
Designing Interoperable Health Care Services Based on Fast Healthcare Interoperability Resources: Literature Review
por: Nan, Jingwen, et al.
Publicado: (2023) -
A Fast Healthcare Interoperability Resources (FHIR) layer implemented over i2b2
por: Boussadi, Abdelali, et al.
Publicado: (2017) -
Prototypical Clinical Trial Registry Based on Fast Healthcare Interoperability Resources (FHIR): Design and Implementation Study
por: Gulden, Christian, et al.
Publicado: (2021)