Cargando…

Neural Mechanisms Underlying the Effects of Novel Sounds on Task Performance in Children With and Without ADHD

Distractibility is one of the key features of attention deficit hyperactivity disorder (ADHD) and has been associated with alterations in the neural orienting and alerting networks. Task-irrelevant stimuli are thus expected to have detrimental effects on the performance of patients with ADHD. Howeve...

Descripción completa

Detalles Bibliográficos
Autores principales: Tegelbeckers, Jana, Brechmann, André, Breitling-Ziegler, Carolin, Bonath, Bjoern, Flechtner, Hans-Henning, Krauel, Kerstin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253267/
https://www.ncbi.nlm.nih.gov/pubmed/35799772
http://dx.doi.org/10.3389/fnhum.2022.878994
Descripción
Sumario:Distractibility is one of the key features of attention deficit hyperactivity disorder (ADHD) and has been associated with alterations in the neural orienting and alerting networks. Task-irrelevant stimuli are thus expected to have detrimental effects on the performance of patients with ADHD. However, task-irrelevant presentation of novel sounds seems to have the opposite effect and improve subsequent attentional performance particularly in patients with ADHD. Here, we aimed to understand the neural modulations of the attention networks underlying these improvements. Fifty boys (25 with ADHD) participated in a functional magnetic resonance imaging (fMRI) study in which unique (novel) or repeatedly presented (familiar) sounds were placed before a visual flanker task in 2/3 of the trials. We found that presenting any sound improved task performance in all participants, but the underlying neural mechanisms differed for the type of sound. Familiar sounds led to a stronger increase in activity in the left posterior insula in patients with ADHD compared to typically developing peers. Novel sounds led to activations of the fronto-temporoparietal ventral attention network, likewise in ADHD and TD. These changes in signaling by novelty in the right inferior frontal gyrus were directly related to improved response speed showing that neural orienting network activity following novel sounds facilitated subsequent attentional performance. This mechanism of behavioral enhancement by short distractions could potentially be useful for cognitive trainings or homework situations.