Cargando…
Deep learning improves implant classification by dental professionals: a multi-center evaluation of accuracy and efficiency
PURPOSE: The aim of this study was to evaluate and compare the accuracy performance of dental professionals in the classification of different types of dental implant systems (DISs) using panoramic radiographic images with and without the assistance of a deep learning (DL) algorithm. METHODS: Using...
Autores principales: | Lee, Jae-Hong, Kim, Young-Taek, Lee, Jong-Bin, Jeong, Seong-Nyum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Academy of Periodontology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253278/ https://www.ncbi.nlm.nih.gov/pubmed/35775697 http://dx.doi.org/10.5051/jpis.2104080204 |
Ejemplares similares
-
A Performance Comparison between Automated Deep Learning and Dental Professionals in Classification of Dental Implant Systems from Dental Imaging: A Multi-Center Study
por: Lee, Jae-Hong, et al.
Publicado: (2020) -
Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: A pilot study
por: Lee, Jae-Hong, et al.
Publicado: (2020) -
Artificial Intelligence in Fractured Dental Implant Detection and Classification: Evaluation Using Dataset from Two Dental Hospitals
por: Lee, Dong-Woon, et al.
Publicado: (2021) -
Automated deep learning for classification of dental implant radiographs using a large multi-center dataset
por: Park, Wonse, et al.
Publicado: (2023) -
Author Correction: Automated deep learning for classification of dental implant radiographs using a large multi-center dataset
por: Park, Wonse, et al.
Publicado: (2023)