Cargando…

A simple time-to-event model with NONMEM featuring right-censoring

In healthcare situations, time-to-event (TTE) data are common outcomes. A parametric approach is often employed to handle TTE data because it is possible to easily visualize different scenarios via simulation. Not all pharmacometricians are familiar with the use of non-linear mixed effects models (N...

Descripción completa

Detalles Bibliográficos
Autores principales: Tran, Quyen Thi, Chae, Jung-woo, Bae, Kyun-Seop, Yun, Hwi-yeol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Clinical Pharmacology and Therapeutics 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253447/
https://www.ncbi.nlm.nih.gov/pubmed/35800666
http://dx.doi.org/10.12793/tcp.2022.30.e8
_version_ 1784740487406551040
author Tran, Quyen Thi
Chae, Jung-woo
Bae, Kyun-Seop
Yun, Hwi-yeol
author_facet Tran, Quyen Thi
Chae, Jung-woo
Bae, Kyun-Seop
Yun, Hwi-yeol
author_sort Tran, Quyen Thi
collection PubMed
description In healthcare situations, time-to-event (TTE) data are common outcomes. A parametric approach is often employed to handle TTE data because it is possible to easily visualize different scenarios via simulation. Not all pharmacometricians are familiar with the use of non-linear mixed effects models (NONMEMs) to deal with TTE data. Therefore, this tutorial simply explains how to analyze TTE data using NONMEM. We show how to write the code and evaluate the model. We also provide an example of a hands-on model for training.
format Online
Article
Text
id pubmed-9253447
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Korean Society for Clinical Pharmacology and Therapeutics
record_format MEDLINE/PubMed
spelling pubmed-92534472022-07-06 A simple time-to-event model with NONMEM featuring right-censoring Tran, Quyen Thi Chae, Jung-woo Bae, Kyun-Seop Yun, Hwi-yeol Transl Clin Pharmacol Tutorial In healthcare situations, time-to-event (TTE) data are common outcomes. A parametric approach is often employed to handle TTE data because it is possible to easily visualize different scenarios via simulation. Not all pharmacometricians are familiar with the use of non-linear mixed effects models (NONMEMs) to deal with TTE data. Therefore, this tutorial simply explains how to analyze TTE data using NONMEM. We show how to write the code and evaluate the model. We also provide an example of a hands-on model for training. Korean Society for Clinical Pharmacology and Therapeutics 2022-06 2022-06-15 /pmc/articles/PMC9253447/ /pubmed/35800666 http://dx.doi.org/10.12793/tcp.2022.30.e8 Text en Copyright © 2022 Translational and Clinical Pharmacology https://creativecommons.org/licenses/by-nc/4.0/It is identical to the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/).
spellingShingle Tutorial
Tran, Quyen Thi
Chae, Jung-woo
Bae, Kyun-Seop
Yun, Hwi-yeol
A simple time-to-event model with NONMEM featuring right-censoring
title A simple time-to-event model with NONMEM featuring right-censoring
title_full A simple time-to-event model with NONMEM featuring right-censoring
title_fullStr A simple time-to-event model with NONMEM featuring right-censoring
title_full_unstemmed A simple time-to-event model with NONMEM featuring right-censoring
title_short A simple time-to-event model with NONMEM featuring right-censoring
title_sort simple time-to-event model with nonmem featuring right-censoring
topic Tutorial
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253447/
https://www.ncbi.nlm.nih.gov/pubmed/35800666
http://dx.doi.org/10.12793/tcp.2022.30.e8
work_keys_str_mv AT tranquyenthi asimpletimetoeventmodelwithnonmemfeaturingrightcensoring
AT chaejungwoo asimpletimetoeventmodelwithnonmemfeaturingrightcensoring
AT baekyunseop asimpletimetoeventmodelwithnonmemfeaturingrightcensoring
AT yunhwiyeol asimpletimetoeventmodelwithnonmemfeaturingrightcensoring
AT tranquyenthi simpletimetoeventmodelwithnonmemfeaturingrightcensoring
AT chaejungwoo simpletimetoeventmodelwithnonmemfeaturingrightcensoring
AT baekyunseop simpletimetoeventmodelwithnonmemfeaturingrightcensoring
AT yunhwiyeol simpletimetoeventmodelwithnonmemfeaturingrightcensoring