Cargando…
Comparison of Four Machine Learning Techniques for Prediction of Intensive Care Unit Length of Stay in Heart Transplantation Patients
BACKGROUND: Post-operative heart transplantation patients often require admission to an intensive care unit (ICU). Early prediction of the ICU length of stay (ICU-LOS) of these patients is of great significance and can guide treatment while reducing the mortality rate among patients. However, conven...
Autores principales: | Wang, Kan, Yan, Li Zhao, Li, Wang Zi, Jiang, Chen, Wang, Ni Ni, Zheng, Qiang, Dong, Nian Guo, Shi, Jia Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253610/ https://www.ncbi.nlm.nih.gov/pubmed/35800164 http://dx.doi.org/10.3389/fcvm.2022.863642 |
Ejemplares similares
-
Predicting Intensive Care Unit Length of Stay After Acute Type A Aortic Dissection Surgery Using Machine Learning
por: Chen, Qiuying, et al.
Publicado: (2021) -
Mini-sternotomy for aortic valve replacement reduces the length of stay in the cardiac intensive care unit: meta-analysis of randomised controlled trials
por: Khoshbin, E, et al.
Publicado: (2011) -
The association between depression and length of stay in the intensive care unit
por: Liao, Kuang-Ming, et al.
Publicado: (2020) -
Predictors of Hospital Length of Stay among Patients with Low-risk Pulmonary Embolism
por: Wang, Li, et al.
Publicado: (2019) -
Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure
por: Chen, Zijun, et al.
Publicado: (2023)