Cargando…
Low Sperm Motility Is Determined by Abnormal Protein Modification during Epididymal Maturation
PURPOSE: During epididymal sperm maturation, spermatozoa acquire progressive motility through dynamic protein modifications. However, the relationship between sequential protein modifications during epididymal sperm maturation and sperm motility and fertility has not yet been investigated. This stud...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society for Sexual Medicine and Andrology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253804/ https://www.ncbi.nlm.nih.gov/pubmed/35274503 http://dx.doi.org/10.5534/wjmh.210180 |
_version_ | 1784740570258735104 |
---|---|
author | Park, Yoo-Jin Lee, Byeong-Mu Pang, Won-Ki Ryu, Do-Yeal Rahman, Md Saidur Pang, Myung-Geol |
author_facet | Park, Yoo-Jin Lee, Byeong-Mu Pang, Won-Ki Ryu, Do-Yeal Rahman, Md Saidur Pang, Myung-Geol |
author_sort | Park, Yoo-Jin |
collection | PubMed |
description | PURPOSE: During epididymal sperm maturation, spermatozoa acquire progressive motility through dynamic protein modifications. However, the relationship between sequential protein modifications during epididymal sperm maturation and sperm motility and fertility has not yet been investigated. This study investigated whether sequential changes in fertility-related protein expression including that of enolase 1 (ENO1), ubiquinol-cytochrome c reductase core protein 1 and 2 (UQCRC1 and UQCRC2), and voltage-dependent anion channel 2 (VDAC2) in spermatozoa during epididymal maturation are related to bovine sperm motility. Moreover, we found that mitochondrial metabolism is closely related to fertility-related proteins. Therefore, we investigated how the sequential modification of mitochondrial proteins during epididymal maturation regulates sperm motility. MATERIALS AND METHODS: To determine the differential protein expression in caput and cauda epididymal spermatozoa from low and high motility bulls, western blot analysis was performed. Moreover, signaling pathways were identified to understand the mechanisms of regulation of sperm motility through the differential protein expression associated with fertility-related proteins. RESULTS: We found that ENO1 was substantially higher in the caput spermatozoa from low motility bulls than the caput and cauda spermatozoa from high motility bulls. However, ENO1 expression in low motility bull spermatozoa was downregulated to a level comparable to that in the high motility bull spermatozoa during epididymal maturation. Moreover, there was a lack of modification of mitochondrial proteins, including glutathione peroxidase 4 and NADH:Ubiquinone Oxidoreductase Core Subunit S8, in low motility bull spermatozoa during epididymal maturation, whereas active changes were detected in high motility bull spermatozoa. CONCLUSIONS: Irregular modifications of mitochondrial proteins during epididymal sperm maturation may increase excessive ROS production and premature activation of spermatozoa during epididymal maturation. Consequently, spermatozoa may lose their motility by the earlier consumption of their energy source and may be damaged by ROS during epididymal maturation, resulting in a decline in sperm motility and bull fertility. |
format | Online Article Text |
id | pubmed-9253804 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Korean Society for Sexual Medicine and Andrology |
record_format | MEDLINE/PubMed |
spelling | pubmed-92538042022-07-06 Low Sperm Motility Is Determined by Abnormal Protein Modification during Epididymal Maturation Park, Yoo-Jin Lee, Byeong-Mu Pang, Won-Ki Ryu, Do-Yeal Rahman, Md Saidur Pang, Myung-Geol World J Mens Health Original Article PURPOSE: During epididymal sperm maturation, spermatozoa acquire progressive motility through dynamic protein modifications. However, the relationship between sequential protein modifications during epididymal sperm maturation and sperm motility and fertility has not yet been investigated. This study investigated whether sequential changes in fertility-related protein expression including that of enolase 1 (ENO1), ubiquinol-cytochrome c reductase core protein 1 and 2 (UQCRC1 and UQCRC2), and voltage-dependent anion channel 2 (VDAC2) in spermatozoa during epididymal maturation are related to bovine sperm motility. Moreover, we found that mitochondrial metabolism is closely related to fertility-related proteins. Therefore, we investigated how the sequential modification of mitochondrial proteins during epididymal maturation regulates sperm motility. MATERIALS AND METHODS: To determine the differential protein expression in caput and cauda epididymal spermatozoa from low and high motility bulls, western blot analysis was performed. Moreover, signaling pathways were identified to understand the mechanisms of regulation of sperm motility through the differential protein expression associated with fertility-related proteins. RESULTS: We found that ENO1 was substantially higher in the caput spermatozoa from low motility bulls than the caput and cauda spermatozoa from high motility bulls. However, ENO1 expression in low motility bull spermatozoa was downregulated to a level comparable to that in the high motility bull spermatozoa during epididymal maturation. Moreover, there was a lack of modification of mitochondrial proteins, including glutathione peroxidase 4 and NADH:Ubiquinone Oxidoreductase Core Subunit S8, in low motility bull spermatozoa during epididymal maturation, whereas active changes were detected in high motility bull spermatozoa. CONCLUSIONS: Irregular modifications of mitochondrial proteins during epididymal sperm maturation may increase excessive ROS production and premature activation of spermatozoa during epididymal maturation. Consequently, spermatozoa may lose their motility by the earlier consumption of their energy source and may be damaged by ROS during epididymal maturation, resulting in a decline in sperm motility and bull fertility. Korean Society for Sexual Medicine and Andrology 2022-07 2022-02-21 /pmc/articles/PMC9253804/ /pubmed/35274503 http://dx.doi.org/10.5534/wjmh.210180 Text en Copyright © 2022 Korean Society for Sexual Medicine and Andrology https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Park, Yoo-Jin Lee, Byeong-Mu Pang, Won-Ki Ryu, Do-Yeal Rahman, Md Saidur Pang, Myung-Geol Low Sperm Motility Is Determined by Abnormal Protein Modification during Epididymal Maturation |
title | Low Sperm Motility Is Determined by Abnormal Protein Modification during Epididymal Maturation |
title_full | Low Sperm Motility Is Determined by Abnormal Protein Modification during Epididymal Maturation |
title_fullStr | Low Sperm Motility Is Determined by Abnormal Protein Modification during Epididymal Maturation |
title_full_unstemmed | Low Sperm Motility Is Determined by Abnormal Protein Modification during Epididymal Maturation |
title_short | Low Sperm Motility Is Determined by Abnormal Protein Modification during Epididymal Maturation |
title_sort | low sperm motility is determined by abnormal protein modification during epididymal maturation |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253804/ https://www.ncbi.nlm.nih.gov/pubmed/35274503 http://dx.doi.org/10.5534/wjmh.210180 |
work_keys_str_mv | AT parkyoojin lowspermmotilityisdeterminedbyabnormalproteinmodificationduringepididymalmaturation AT leebyeongmu lowspermmotilityisdeterminedbyabnormalproteinmodificationduringepididymalmaturation AT pangwonki lowspermmotilityisdeterminedbyabnormalproteinmodificationduringepididymalmaturation AT ryudoyeal lowspermmotilityisdeterminedbyabnormalproteinmodificationduringepididymalmaturation AT rahmanmdsaidur lowspermmotilityisdeterminedbyabnormalproteinmodificationduringepididymalmaturation AT pangmyunggeol lowspermmotilityisdeterminedbyabnormalproteinmodificationduringepididymalmaturation |