Cargando…
Sensitivity analysis for calibrated inverse probability-of-censoring weighted estimators under non-ignorable dropout
Inverse probability of censoring weighting is a popular approach to handling dropout in longitudinal studies. However, inverse probability-of-censoring weighted estimators (IPCWEs) can be inefficient and unstable if the weights are estimated by maximum likelihood. To alleviate these problems, calibr...
Autores principales: | Su, Li, Seaman, Shaun R, Yiu, Sean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9253927/ https://www.ncbi.nlm.nih.gov/pubmed/35410545 http://dx.doi.org/10.1177/09622802221090763 |
Ejemplares similares
-
Joint calibrated estimation of inverse probability of treatment and censoring weights for marginal structural models
por: Yiu, Sean, et al.
Publicado: (2020) -
Estimation of Overall Survival with Subsequent Treatment Effect by Applying Inverse Probability of Censoring Weighting in the LATITUDE Study
por: Koroki, Yosuke, et al.
Publicado: (2022) -
Combining Multiple Imputation and Inverse-Probability
Weighting
por: Seaman, Shaun R, et al.
Publicado: (2012) -
Estimation of marginal structural models under irregular visits and unmeasured confounder: calibrated inverse probability weights
por: Kalia, Sumeet, et al.
Publicado: (2023) -
Estimation of Entropy for Inverse Lomax Distribution under Multiple Censored Data
por: Bantan, Rashad A. R., et al.
Publicado: (2020)