Cargando…

Pace and shape of senescence in three species of duckweed

Senescence is progressive bodily deterioration associated with declines in survival and fecundity in older age classes. There is great diversity in patterns of senescence across species, but these patterns can be difficult to compare formally due to variation in the absolute time scales in which spe...

Descripción completa

Detalles Bibliográficos
Autores principales: Paiha, Austin P., Laird, Robert A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254075/
https://www.ncbi.nlm.nih.gov/pubmed/35813927
http://dx.doi.org/10.1002/ece3.9038
Descripción
Sumario:Senescence is progressive bodily deterioration associated with declines in survival and fecundity in older age classes. There is great diversity in patterns of senescence across species, but these patterns can be difficult to compare formally due to variation in the absolute time scales in which species live and die: members of some species live for a matter of days, others for millennia. To address this issue, the “pace‐shape” approach was developed to decouple absolute time from analyses and instead standardize life history traits in terms of average life expectancy, facilitating intra‐ and interspecific comparisons. Here, we use this approach to distinguish the generic form of demographic trajectories (shape) from the time scale on which the trajectories occurred (pace) in three species of tiny, free‐floating aquatic plants known as duckweeds (Lemna gibba L., L. minor L., and L. turionifera Landolt), which have mean lifespans of less than a month under typical lab conditions, and exhibit age‐related declines in survivorship and reproduction. Using a randomized block design in which we tracked a final total of 430 individuals, we report differences in pace and shape among the three species. Specifically, the largest, least‐fecund, and typically longest‐lived species, L. gibba, tended to exhibit more rapid decreases in time‐standardized survivorship and fecundity compared with the other two species. This study emphasizes variation in aging patterns that can be found among plant species, including those in the same genus, and provides further validation for the utility of applying the pace and shape approach in interspecific comparisons.