Cargando…

The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors

Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reac...

Descripción completa

Detalles Bibliográficos
Autores principales: Murphy, Robert D., Chen, Tiantian, Lin, Jianping, He, Rongjun, Wu, Li, Pearson, Caden R., Sharma, Savita, Vander Kooi, Carl D., Sinai, Anthony P., Zhang, Zhong-Yin, Vander Kooi, Craig W., Gentry, Matthew S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254107/
https://www.ncbi.nlm.nih.gov/pubmed/35640720
http://dx.doi.org/10.1016/j.jbc.2022.102089
_version_ 1784740624223698944
author Murphy, Robert D.
Chen, Tiantian
Lin, Jianping
He, Rongjun
Wu, Li
Pearson, Caden R.
Sharma, Savita
Vander Kooi, Carl D.
Sinai, Anthony P.
Zhang, Zhong-Yin
Vander Kooi, Craig W.
Gentry, Matthew S.
author_facet Murphy, Robert D.
Chen, Tiantian
Lin, Jianping
He, Rongjun
Wu, Li
Pearson, Caden R.
Sharma, Savita
Vander Kooi, Carl D.
Sinai, Anthony P.
Zhang, Zhong-Yin
Vander Kooi, Craig W.
Gentry, Matthew S.
author_sort Murphy, Robert D.
collection PubMed
description Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen–deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain–mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target.
format Online
Article
Text
id pubmed-9254107
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-92541072022-07-08 The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors Murphy, Robert D. Chen, Tiantian Lin, Jianping He, Rongjun Wu, Li Pearson, Caden R. Sharma, Savita Vander Kooi, Carl D. Sinai, Anthony P. Zhang, Zhong-Yin Vander Kooi, Craig W. Gentry, Matthew S. J Biol Chem Research Article Toxoplasma gondii is an intracellular parasite that generates amylopectin granules (AGs), a polysaccharide associated with bradyzoites that define chronic T. gondii infection. AGs are postulated to act as an essential energy storage molecule that enable bradyzoite persistence, transmission, and reactivation. Importantly, reactivation can result in the life-threatening symptoms of toxoplasmosis. T. gondii encodes glucan dikinase and glucan phosphatase enzymes that are homologous to the plant and animal enzymes involved in reversible glucan phosphorylation and which are required for efficient polysaccharide degradation and utilization. However, the structural determinants that regulate reversible glucan phosphorylation in T. gondii are unclear. Herein, we define key functional aspects of the T. gondii glucan phosphatase TgLaforin (TGME49_205290). We demonstrate that TgLaforin possesses an atypical split carbohydrate-binding-module domain. AlphaFold2 modeling combined with hydrogen–deuterium exchange mass spectrometry and differential scanning fluorimetry also demonstrate the unique structural dynamics of TgLaforin with regard to glucan binding. Moreover, we show that TgLaforin forms a dual specificity phosphatase domain–mediated dimer. Finally, the distinct properties of the glucan phosphatase catalytic domain were exploited to identify a small molecule inhibitor of TgLaforin catalytic activity. Together, these studies define a distinct mechanism of TgLaforin activity, opening up a new avenue of T. gondii bradyzoite biology as a therapeutic target. American Society for Biochemistry and Molecular Biology 2022-05-28 /pmc/articles/PMC9254107/ /pubmed/35640720 http://dx.doi.org/10.1016/j.jbc.2022.102089 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Murphy, Robert D.
Chen, Tiantian
Lin, Jianping
He, Rongjun
Wu, Li
Pearson, Caden R.
Sharma, Savita
Vander Kooi, Carl D.
Sinai, Anthony P.
Zhang, Zhong-Yin
Vander Kooi, Craig W.
Gentry, Matthew S.
The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors
title The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors
title_full The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors
title_fullStr The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors
title_full_unstemmed The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors
title_short The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors
title_sort toxoplasma glucan phosphatase tglaforin utilizes a distinct functional mechanism that can be exploited by therapeutic inhibitors
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254107/
https://www.ncbi.nlm.nih.gov/pubmed/35640720
http://dx.doi.org/10.1016/j.jbc.2022.102089
work_keys_str_mv AT murphyrobertd thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT chentiantian thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT linjianping thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT herongjun thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT wuli thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT pearsoncadenr thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT sharmasavita thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT vanderkooicarld thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT sinaianthonyp thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT zhangzhongyin thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT vanderkooicraigw thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT gentrymatthews thetoxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT murphyrobertd toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT chentiantian toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT linjianping toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT herongjun toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT wuli toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT pearsoncadenr toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT sharmasavita toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT vanderkooicarld toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT sinaianthonyp toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT zhangzhongyin toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT vanderkooicraigw toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors
AT gentrymatthews toxoplasmaglucanphosphatasetglaforinutilizesadistinctfunctionalmechanismthatcanbeexploitedbytherapeuticinhibitors