Cargando…
Fasim-LongTarget enables fast and accurate genome-wide lncRNA/DNA binding prediction
Many long noncoding RNAs (lncRNAs) can bind to DNA sequences proximal and distal to abundant genes, thereby regulating gene expression by recruiting epigenomic modification enzymes to binding sites. Because a lncRNA's target genes scattering in a genome have correlated functions, epigenetic ana...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254339/ https://www.ncbi.nlm.nih.gov/pubmed/35832611 http://dx.doi.org/10.1016/j.csbj.2022.06.017 |
Sumario: | Many long noncoding RNAs (lncRNAs) can bind to DNA sequences proximal and distal to abundant genes, thereby regulating gene expression by recruiting epigenomic modification enzymes to binding sites. Because a lncRNA's target genes scattering in a genome have correlated functions, epigenetic analyses should often be genome-wide on both genome and transcriptome levels. Multiple tools have been developed for predicting lncRNA/DNA binding, but fast and accurate genome-wide prediction remains a challenge. Here we report Fasim-LongTarget (a revised version of LongTarget), compare its performance with TDF and LongTarget using the experimental data of the lncRNA MEG3, NEAT1, and MALAT1, and describe a case of genome-wide prediction. Fasim-LongTarget is as accurate as LongTarget and more accurate than TDF and is 200 times faster than LongTarget, making accurate genome-wide prediction feasible. The code is available on the Github website (https://github.com/LongTarget/Fasim-LongTarget), and the online service is available on the LongTarget website (https://lncRNA.smu.edu.cn). |
---|