Cargando…

Fasim-LongTarget enables fast and accurate genome-wide lncRNA/DNA binding prediction

Many long noncoding RNAs (lncRNAs) can bind to DNA sequences proximal and distal to abundant genes, thereby regulating gene expression by recruiting epigenomic modification enzymes to binding sites. Because a lncRNA's target genes scattering in a genome have correlated functions, epigenetic ana...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Yujian, Wu, Yijin, Xu, Baoyan, Lin, Jie, Zhu, Hao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254339/
https://www.ncbi.nlm.nih.gov/pubmed/35832611
http://dx.doi.org/10.1016/j.csbj.2022.06.017
Descripción
Sumario:Many long noncoding RNAs (lncRNAs) can bind to DNA sequences proximal and distal to abundant genes, thereby regulating gene expression by recruiting epigenomic modification enzymes to binding sites. Because a lncRNA's target genes scattering in a genome have correlated functions, epigenetic analyses should often be genome-wide on both genome and transcriptome levels. Multiple tools have been developed for predicting lncRNA/DNA binding, but fast and accurate genome-wide prediction remains a challenge. Here we report Fasim-LongTarget (a revised version of LongTarget), compare its performance with TDF and LongTarget using the experimental data of the lncRNA MEG3, NEAT1, and MALAT1, and describe a case of genome-wide prediction. Fasim-LongTarget is as accurate as LongTarget and more accurate than TDF and is 200 times faster than LongTarget, making accurate genome-wide prediction feasible. The code is available on the Github website (https://github.com/LongTarget/Fasim-LongTarget), and the online service is available on the LongTarget website (https://lncRNA.smu.edu.cn).