Cargando…
IL-6/STAT3 Axis Activates Glut5 to Regulate Fructose Metabolism and Tumorigenesis
Cancer cells frequently use fructose as an alternative energy and carbon source, to fuel glycolysis and support the synthesis of various biomacromolecules. Glut5 is the only fructose-specific transporter, which lacks the ability to transport other carbohydrates such as glucose and galactose. Interpl...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254469/ https://www.ncbi.nlm.nih.gov/pubmed/35813468 http://dx.doi.org/10.7150/ijbs.68990 |
_version_ | 1784740706647015424 |
---|---|
author | Huang, Xiaoke Fang, Jing Lai, Weiqi Hu, Yu Li, Liang Zhong, Yuanyou Yang, Shiwei He, Dan Liu, Rui Tang, Qingfeng |
author_facet | Huang, Xiaoke Fang, Jing Lai, Weiqi Hu, Yu Li, Liang Zhong, Yuanyou Yang, Shiwei He, Dan Liu, Rui Tang, Qingfeng |
author_sort | Huang, Xiaoke |
collection | PubMed |
description | Cancer cells frequently use fructose as an alternative energy and carbon source, to fuel glycolysis and support the synthesis of various biomacromolecules. Glut5 is the only fructose-specific transporter, which lacks the ability to transport other carbohydrates such as glucose and galactose. Interplay between inflammatory factors and cancer cells renders inflammatory tissue environment as a predisposing condition for cancer development. Nevertheless, how inflammatory factors coordinate with fructose metabolism to facilitate tumor growth remains largely elusive. Here we show that treatment with IL-6 activates fructose uptake and fructolysis in oral squamous cell carcinoma (OSCC) cells and prostate cancer cells. Mechanistic study shows that transcription factor STAT3 associates with Glut5 promoter region and enhances Glut5 transcription in response to IL-6 treatment. Knockdown of Glut5 abolished IL-6-induced fructose uptake and utilization of fructose, and compromises IL-6-elicited tumor cell proliferation. Further, positive correlation between Glut5 and IL-6 expression is observed in multiple cancers. Our findings demonstrate a regulatory cascade underlying the crosstalk between inflammation and fructose metabolism in cancer cells, and highlights Glut5 as a novel oncogenic factor. |
format | Online Article Text |
id | pubmed-9254469 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-92544692022-07-09 IL-6/STAT3 Axis Activates Glut5 to Regulate Fructose Metabolism and Tumorigenesis Huang, Xiaoke Fang, Jing Lai, Weiqi Hu, Yu Li, Liang Zhong, Yuanyou Yang, Shiwei He, Dan Liu, Rui Tang, Qingfeng Int J Biol Sci Research Paper Cancer cells frequently use fructose as an alternative energy and carbon source, to fuel glycolysis and support the synthesis of various biomacromolecules. Glut5 is the only fructose-specific transporter, which lacks the ability to transport other carbohydrates such as glucose and galactose. Interplay between inflammatory factors and cancer cells renders inflammatory tissue environment as a predisposing condition for cancer development. Nevertheless, how inflammatory factors coordinate with fructose metabolism to facilitate tumor growth remains largely elusive. Here we show that treatment with IL-6 activates fructose uptake and fructolysis in oral squamous cell carcinoma (OSCC) cells and prostate cancer cells. Mechanistic study shows that transcription factor STAT3 associates with Glut5 promoter region and enhances Glut5 transcription in response to IL-6 treatment. Knockdown of Glut5 abolished IL-6-induced fructose uptake and utilization of fructose, and compromises IL-6-elicited tumor cell proliferation. Further, positive correlation between Glut5 and IL-6 expression is observed in multiple cancers. Our findings demonstrate a regulatory cascade underlying the crosstalk between inflammation and fructose metabolism in cancer cells, and highlights Glut5 as a novel oncogenic factor. Ivyspring International Publisher 2022-05-16 /pmc/articles/PMC9254469/ /pubmed/35813468 http://dx.doi.org/10.7150/ijbs.68990 Text en © The author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Huang, Xiaoke Fang, Jing Lai, Weiqi Hu, Yu Li, Liang Zhong, Yuanyou Yang, Shiwei He, Dan Liu, Rui Tang, Qingfeng IL-6/STAT3 Axis Activates Glut5 to Regulate Fructose Metabolism and Tumorigenesis |
title | IL-6/STAT3 Axis Activates Glut5 to Regulate Fructose Metabolism and Tumorigenesis |
title_full | IL-6/STAT3 Axis Activates Glut5 to Regulate Fructose Metabolism and Tumorigenesis |
title_fullStr | IL-6/STAT3 Axis Activates Glut5 to Regulate Fructose Metabolism and Tumorigenesis |
title_full_unstemmed | IL-6/STAT3 Axis Activates Glut5 to Regulate Fructose Metabolism and Tumorigenesis |
title_short | IL-6/STAT3 Axis Activates Glut5 to Regulate Fructose Metabolism and Tumorigenesis |
title_sort | il-6/stat3 axis activates glut5 to regulate fructose metabolism and tumorigenesis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254469/ https://www.ncbi.nlm.nih.gov/pubmed/35813468 http://dx.doi.org/10.7150/ijbs.68990 |
work_keys_str_mv | AT huangxiaoke il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis AT fangjing il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis AT laiweiqi il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis AT huyu il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis AT liliang il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis AT zhongyuanyou il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis AT yangshiwei il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis AT hedan il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis AT liurui il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis AT tangqingfeng il6stat3axisactivatesglut5toregulatefructosemetabolismandtumorigenesis |