Cargando…
Highly perturbed genes and hub genes associated with type 2 diabetes in different tissues of adult humans: a bioinformatics analytic workflow
Type 2 diabetes (T2D) has a complex etiology which is not yet fully elucidated. The identification of gene perturbations and hub genes of T2D may deepen our understanding of its genetic basis. We aimed to identify highly perturbed genes and hub genes associated with T2D via an extensive bioinformati...
Autores principales: | De Silva, Kushan, Demmer, Ryan T., Jönsson, Daniel, Mousa, Aya, Forbes, Andrew, Enticott, Joanne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255467/ https://www.ncbi.nlm.nih.gov/pubmed/35788821 http://dx.doi.org/10.1007/s10142-022-00881-5 |
Ejemplares similares
-
A data-driven biocomputing pipeline with meta-analysis on high throughput transcriptomics to identify genome-wide miRNA markers associated with type 2 diabetes
por: De Silva, Kushan, et al.
Publicado: (2022) -
Causality of anthropometric markers associated with polycystic ovarian syndrome: Findings of a Mendelian randomization study
por: De Silva, Kushan, et al.
Publicado: (2022) -
Nutritional markers of undiagnosed type 2 diabetes in adults: Findings of a machine learning analysis with external validation and benchmarking
por: De Silva, Kushan, et al.
Publicado: (2021) -
Use and performance of machine learning models for type 2 diabetes
prediction in clinical and community care settings: Protocol for a systematic
review and meta-analysis of predictive modeling studies
por: De Silva, Kushan, et al.
Publicado: (2021) -
Prediction and analysis of osteoarthritis hub genes with bioinformatics
por: Zhong, Junqing, et al.
Publicado: (2023)