Cargando…
Groundwater quality prediction based on LSTM RNN: An Iranian experience
Groundwater quality prediction has practical significance for the prevention of water pollution. Based on the exogenous variables which are effective on water quality indicators, this paper proposes a new method with new effective parameters based on LSTM RNN for groundwater quality index prediction...
Autores principales: | Valadkhan, D., Moghaddasi, R., Mohammadinejad, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255493/ https://www.ncbi.nlm.nih.gov/pubmed/35813581 http://dx.doi.org/10.1007/s13762-022-04356-9 |
Ejemplares similares
-
RNN- and LSTM-Based Soft Sensors Transferability for an Industrial Process
por: Curreri, Francesco, et al.
Publicado: (2021) -
Splice-site identification for exon prediction using bidirectional LSTM-RNN approach
por: Singh, Noopur, et al.
Publicado: (2022) -
Audio-Visual Stress Classification Using Cascaded RNN-LSTM Networks
por: Gupta, Megha V., et al.
Publicado: (2022) -
A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy
por: Najafi, Tahereh, et al.
Publicado: (2022) -
A Soft Sensor to Estimate the Opening of Greenhouse Vents Based on an LSTM-RNN Neural Network
por: Guesbaya, Mounir, et al.
Publicado: (2023)