Cargando…
Synthesis of 2D anatase TiO(2) with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS(2) nanosheets
Two-dimensional (2D) anatase titanium dioxide (TiO(2)) is expected to exhibit different properties as compared to anatase nanocrystallites, due to its highly reactive exposed facets. However, access to 2D anatase TiO(2) is limited by the non-layered nature of the bulk crystal, which does not allow u...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255669/ https://www.ncbi.nlm.nih.gov/pubmed/35872702 http://dx.doi.org/10.1039/d1ta06695a |
_version_ | 1784740968224784384 |
---|---|
author | Zarattini, Marco Dun, Chaochao Isherwood, Liam H. Felten, Alexandre Filippi, Jonathan Gordon, Madeleine P. Zhang, Linfei Kassem, Omar Song, Xiuju Zhang, Wenjing Ionescu, Robert Wittkopf, Jarrid A. Baidak, Aliaksandr Holder, Helen Santoro, Carlo Lavacchi, Alessandro Urban, Jeffrey J. Casiraghi, Cinzia |
author_facet | Zarattini, Marco Dun, Chaochao Isherwood, Liam H. Felten, Alexandre Filippi, Jonathan Gordon, Madeleine P. Zhang, Linfei Kassem, Omar Song, Xiuju Zhang, Wenjing Ionescu, Robert Wittkopf, Jarrid A. Baidak, Aliaksandr Holder, Helen Santoro, Carlo Lavacchi, Alessandro Urban, Jeffrey J. Casiraghi, Cinzia |
author_sort | Zarattini, Marco |
collection | PubMed |
description | Two-dimensional (2D) anatase titanium dioxide (TiO(2)) is expected to exhibit different properties as compared to anatase nanocrystallites, due to its highly reactive exposed facets. However, access to 2D anatase TiO(2) is limited by the non-layered nature of the bulk crystal, which does not allow use of top-down chemical exfoliation. Large efforts have been dedicated to the growth of 2D anatase TiO(2) with high reactive facets by bottom-up approaches, which relies on the use of harmful chemical reagents. Here, we demonstrate a novel fluorine-free strategy based on topochemical conversion of 2D 1T-TiS(2) for the production of single crystalline 2D anatase TiO(2), exposing the {001} facet on the top and bottom and {100} at the sides of the nanosheet. The exposure of these faces, with no additional defects or doping, gives rise to a significant activity enhancement in the hydrogen evolution reaction, as compared to commercially available Degussa P25 TiO(2) nanoparticles. Because of the strong potential of TiO(2) in many energy-based applications, our topochemical approach offers a low cost, green and mass scalable route for production of highly crystalline anatase TiO(2) with well controlled and highly reactive exposed facets. |
format | Online Article Text |
id | pubmed-9255669 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-92556692022-07-20 Synthesis of 2D anatase TiO(2) with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS(2) nanosheets Zarattini, Marco Dun, Chaochao Isherwood, Liam H. Felten, Alexandre Filippi, Jonathan Gordon, Madeleine P. Zhang, Linfei Kassem, Omar Song, Xiuju Zhang, Wenjing Ionescu, Robert Wittkopf, Jarrid A. Baidak, Aliaksandr Holder, Helen Santoro, Carlo Lavacchi, Alessandro Urban, Jeffrey J. Casiraghi, Cinzia J Mater Chem A Mater Chemistry Two-dimensional (2D) anatase titanium dioxide (TiO(2)) is expected to exhibit different properties as compared to anatase nanocrystallites, due to its highly reactive exposed facets. However, access to 2D anatase TiO(2) is limited by the non-layered nature of the bulk crystal, which does not allow use of top-down chemical exfoliation. Large efforts have been dedicated to the growth of 2D anatase TiO(2) with high reactive facets by bottom-up approaches, which relies on the use of harmful chemical reagents. Here, we demonstrate a novel fluorine-free strategy based on topochemical conversion of 2D 1T-TiS(2) for the production of single crystalline 2D anatase TiO(2), exposing the {001} facet on the top and bottom and {100} at the sides of the nanosheet. The exposure of these faces, with no additional defects or doping, gives rise to a significant activity enhancement in the hydrogen evolution reaction, as compared to commercially available Degussa P25 TiO(2) nanoparticles. Because of the strong potential of TiO(2) in many energy-based applications, our topochemical approach offers a low cost, green and mass scalable route for production of highly crystalline anatase TiO(2) with well controlled and highly reactive exposed facets. The Royal Society of Chemistry 2022-06-21 /pmc/articles/PMC9255669/ /pubmed/35872702 http://dx.doi.org/10.1039/d1ta06695a Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Zarattini, Marco Dun, Chaochao Isherwood, Liam H. Felten, Alexandre Filippi, Jonathan Gordon, Madeleine P. Zhang, Linfei Kassem, Omar Song, Xiuju Zhang, Wenjing Ionescu, Robert Wittkopf, Jarrid A. Baidak, Aliaksandr Holder, Helen Santoro, Carlo Lavacchi, Alessandro Urban, Jeffrey J. Casiraghi, Cinzia Synthesis of 2D anatase TiO(2) with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS(2) nanosheets |
title | Synthesis of 2D anatase TiO(2) with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS(2) nanosheets |
title_full | Synthesis of 2D anatase TiO(2) with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS(2) nanosheets |
title_fullStr | Synthesis of 2D anatase TiO(2) with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS(2) nanosheets |
title_full_unstemmed | Synthesis of 2D anatase TiO(2) with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS(2) nanosheets |
title_short | Synthesis of 2D anatase TiO(2) with highly reactive facets by fluorine-free topochemical conversion of 1T-TiS(2) nanosheets |
title_sort | synthesis of 2d anatase tio(2) with highly reactive facets by fluorine-free topochemical conversion of 1t-tis(2) nanosheets |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255669/ https://www.ncbi.nlm.nih.gov/pubmed/35872702 http://dx.doi.org/10.1039/d1ta06695a |
work_keys_str_mv | AT zarattinimarco synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT dunchaochao synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT isherwoodliamh synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT feltenalexandre synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT filippijonathan synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT gordonmadeleinep synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT zhanglinfei synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT kassemomar synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT songxiuju synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT zhangwenjing synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT ionescurobert synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT wittkopfjarrida synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT baidakaliaksandr synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT holderhelen synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT santorocarlo synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT lavacchialessandro synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT urbanjeffreyj synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets AT casiraghicinzia synthesisof2danatasetio2withhighlyreactivefacetsbyfluorinefreetopochemicalconversionof1ttis2nanosheets |