Cargando…
Research and development strategy for biodegradable magnesium-based vascular stents: a review
Magnesium alloys are an ideal material for biodegradable vascular stents, which can be completely absorbed in the human body, and have good biosafety and mechanical properties. However, the rapid corrosion rate and excessive localized corrosion, as well as challenges in the preparation and processin...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chinese Medical Multimedia Press Co., Ltd
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255809/ https://www.ncbi.nlm.nih.gov/pubmed/35836652 http://dx.doi.org/10.12336/biomatertransl.2021.03.06 |
_version_ | 1784740997504172032 |
---|---|
author | Niu, Jialin Huang, Hua Pei, Jia Jin, Zhaohui Guan, Shaokang Yuan, Guangyin |
author_facet | Niu, Jialin Huang, Hua Pei, Jia Jin, Zhaohui Guan, Shaokang Yuan, Guangyin |
author_sort | Niu, Jialin |
collection | PubMed |
description | Magnesium alloys are an ideal material for biodegradable vascular stents, which can be completely absorbed in the human body, and have good biosafety and mechanical properties. However, the rapid corrosion rate and excessive localized corrosion, as well as challenges in the preparation and processing of microtubes for stents, are restricting the clinical application of magnesium-based vascular stents. In the present work we will give an overview of the recent progresses on biodegradable magnesium based vascular stents including magnesium alloy design, high-precision microtubes processing, stent shape optimisation and functional coating preparation. In particular, the Triune Principle in biodegradable magnesium alloy design is proposed based on our research experience, which requires three key aspects to be considered when designing new biodegradable magnesium alloys for vascular stents application, i.e. biocompatibility and biosafety, mechanical properties, and biodegradation. This review hopes to inspire the future studies on the design and development of biodegradable magnesium alloy-based vascular stents. |
format | Online Article Text |
id | pubmed-9255809 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Chinese Medical Multimedia Press Co., Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-92558092022-07-13 Research and development strategy for biodegradable magnesium-based vascular stents: a review Niu, Jialin Huang, Hua Pei, Jia Jin, Zhaohui Guan, Shaokang Yuan, Guangyin Biomater Transl Review Magnesium alloys are an ideal material for biodegradable vascular stents, which can be completely absorbed in the human body, and have good biosafety and mechanical properties. However, the rapid corrosion rate and excessive localized corrosion, as well as challenges in the preparation and processing of microtubes for stents, are restricting the clinical application of magnesium-based vascular stents. In the present work we will give an overview of the recent progresses on biodegradable magnesium based vascular stents including magnesium alloy design, high-precision microtubes processing, stent shape optimisation and functional coating preparation. In particular, the Triune Principle in biodegradable magnesium alloy design is proposed based on our research experience, which requires three key aspects to be considered when designing new biodegradable magnesium alloys for vascular stents application, i.e. biocompatibility and biosafety, mechanical properties, and biodegradation. This review hopes to inspire the future studies on the design and development of biodegradable magnesium alloy-based vascular stents. Chinese Medical Multimedia Press Co., Ltd 2021-09-28 /pmc/articles/PMC9255809/ /pubmed/35836652 http://dx.doi.org/10.12336/biomatertransl.2021.03.06 Text en https://creativecommons.org/licenses/by-nc-sa/4.0/This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Niu, Jialin Huang, Hua Pei, Jia Jin, Zhaohui Guan, Shaokang Yuan, Guangyin Research and development strategy for biodegradable magnesium-based vascular stents: a review |
title | Research and development strategy for biodegradable magnesium-based vascular stents: a review |
title_full | Research and development strategy for biodegradable magnesium-based vascular stents: a review |
title_fullStr | Research and development strategy for biodegradable magnesium-based vascular stents: a review |
title_full_unstemmed | Research and development strategy for biodegradable magnesium-based vascular stents: a review |
title_short | Research and development strategy for biodegradable magnesium-based vascular stents: a review |
title_sort | research and development strategy for biodegradable magnesium-based vascular stents: a review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255809/ https://www.ncbi.nlm.nih.gov/pubmed/35836652 http://dx.doi.org/10.12336/biomatertransl.2021.03.06 |
work_keys_str_mv | AT niujialin researchanddevelopmentstrategyforbiodegradablemagnesiumbasedvascularstentsareview AT huanghua researchanddevelopmentstrategyforbiodegradablemagnesiumbasedvascularstentsareview AT peijia researchanddevelopmentstrategyforbiodegradablemagnesiumbasedvascularstentsareview AT jinzhaohui researchanddevelopmentstrategyforbiodegradablemagnesiumbasedvascularstentsareview AT guanshaokang researchanddevelopmentstrategyforbiodegradablemagnesiumbasedvascularstentsareview AT yuanguangyin researchanddevelopmentstrategyforbiodegradablemagnesiumbasedvascularstentsareview |