Cargando…

Structural differences in adolescent brains can predict alcohol misuse

Alcohol misuse during adolescence (AAM) has been associated with disruptive development of adolescent brains. In this longitudinal machine learning (ML) study, we could predict AAM significantly from brain structure (T1-weighted imaging and DTI) with accuracies of 73 -78% in the IMAGEN dataset (n∼11...

Descripción completa

Detalles Bibliográficos
Autores principales: Rane, Roshan Prakash, de Man, Evert Ferdinand, Kim, JiHoon, Görgen, Kai, Tschorn, Mira, Rapp, Michael A, Banaschewski, Tobias, Bokde, Arun LW, Desrivieres, Sylvane, Flor, Herta, Grigis, Antoine, Garavan, Hugh, Gowland, Penny A, Brühl, Rüdiger, Martinot, Jean-Luc, Martinot, Marie-Laure Paillere, Artiges, Eric, Nees, Frauke, Papadopoulos Orfanos, Dimitri, Lemaitre, Herve, Paus, Tomas, Poustka, Luise, Fröhner, Juliane, Robinson, Lauren, Smolka, Michael N, Winterer, Jeanne, Whelan, Robert, Schumann, Gunter, Walter, Henrik, Heinz, Andreas, Ritter, Kerstin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255959/
https://www.ncbi.nlm.nih.gov/pubmed/35616520
http://dx.doi.org/10.7554/eLife.77545
_version_ 1784741019331330048
author Rane, Roshan Prakash
de Man, Evert Ferdinand
Kim, JiHoon
Görgen, Kai
Tschorn, Mira
Rapp, Michael A
Banaschewski, Tobias
Bokde, Arun LW
Desrivieres, Sylvane
Flor, Herta
Grigis, Antoine
Garavan, Hugh
Gowland, Penny A
Brühl, Rüdiger
Martinot, Jean-Luc
Martinot, Marie-Laure Paillere
Artiges, Eric
Nees, Frauke
Papadopoulos Orfanos, Dimitri
Lemaitre, Herve
Paus, Tomas
Poustka, Luise
Fröhner, Juliane
Robinson, Lauren
Smolka, Michael N
Winterer, Jeanne
Whelan, Robert
Schumann, Gunter
Walter, Henrik
Heinz, Andreas
Ritter, Kerstin
author_facet Rane, Roshan Prakash
de Man, Evert Ferdinand
Kim, JiHoon
Görgen, Kai
Tschorn, Mira
Rapp, Michael A
Banaschewski, Tobias
Bokde, Arun LW
Desrivieres, Sylvane
Flor, Herta
Grigis, Antoine
Garavan, Hugh
Gowland, Penny A
Brühl, Rüdiger
Martinot, Jean-Luc
Martinot, Marie-Laure Paillere
Artiges, Eric
Nees, Frauke
Papadopoulos Orfanos, Dimitri
Lemaitre, Herve
Paus, Tomas
Poustka, Luise
Fröhner, Juliane
Robinson, Lauren
Smolka, Michael N
Winterer, Jeanne
Whelan, Robert
Schumann, Gunter
Walter, Henrik
Heinz, Andreas
Ritter, Kerstin
author_sort Rane, Roshan Prakash
collection PubMed
description Alcohol misuse during adolescence (AAM) has been associated with disruptive development of adolescent brains. In this longitudinal machine learning (ML) study, we could predict AAM significantly from brain structure (T1-weighted imaging and DTI) with accuracies of 73 -78% in the IMAGEN dataset (n∼1182). Our results not only show that structural differences in brain can predict AAM, but also suggests that such differences might precede AAM behavior in the data. We predicted 10 phenotypes of AAM at age 22 using brain MRI features at ages 14, 19, and 22. Binge drinking was found to be the most predictable phenotype. The most informative brain features were located in the ventricular CSF, and in white matter tracts of the corpus callosum, internal capsule, and brain stem. In the cortex, they were spread across the occipital, frontal, and temporal lobes and in the cingulate cortex. We also experimented with four different ML models and several confound control techniques. Support Vector Machine (SVM) with rbf kernel and Gradient Boosting consistently performed better than the linear models, linear SVM and Logistic Regression. Our study also demonstrates how the choice of the predicted phenotype, ML model, and confound correction technique are all crucial decisions in an explorative ML study analyzing psychiatric disorders with small effect sizes such as AAM.
format Online
Article
Text
id pubmed-9255959
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-92559592022-07-06 Structural differences in adolescent brains can predict alcohol misuse Rane, Roshan Prakash de Man, Evert Ferdinand Kim, JiHoon Görgen, Kai Tschorn, Mira Rapp, Michael A Banaschewski, Tobias Bokde, Arun LW Desrivieres, Sylvane Flor, Herta Grigis, Antoine Garavan, Hugh Gowland, Penny A Brühl, Rüdiger Martinot, Jean-Luc Martinot, Marie-Laure Paillere Artiges, Eric Nees, Frauke Papadopoulos Orfanos, Dimitri Lemaitre, Herve Paus, Tomas Poustka, Luise Fröhner, Juliane Robinson, Lauren Smolka, Michael N Winterer, Jeanne Whelan, Robert Schumann, Gunter Walter, Henrik Heinz, Andreas Ritter, Kerstin eLife Computational and Systems Biology Alcohol misuse during adolescence (AAM) has been associated with disruptive development of adolescent brains. In this longitudinal machine learning (ML) study, we could predict AAM significantly from brain structure (T1-weighted imaging and DTI) with accuracies of 73 -78% in the IMAGEN dataset (n∼1182). Our results not only show that structural differences in brain can predict AAM, but also suggests that such differences might precede AAM behavior in the data. We predicted 10 phenotypes of AAM at age 22 using brain MRI features at ages 14, 19, and 22. Binge drinking was found to be the most predictable phenotype. The most informative brain features were located in the ventricular CSF, and in white matter tracts of the corpus callosum, internal capsule, and brain stem. In the cortex, they were spread across the occipital, frontal, and temporal lobes and in the cingulate cortex. We also experimented with four different ML models and several confound control techniques. Support Vector Machine (SVM) with rbf kernel and Gradient Boosting consistently performed better than the linear models, linear SVM and Logistic Regression. Our study also demonstrates how the choice of the predicted phenotype, ML model, and confound correction technique are all crucial decisions in an explorative ML study analyzing psychiatric disorders with small effect sizes such as AAM. eLife Sciences Publications, Ltd 2022-05-26 /pmc/articles/PMC9255959/ /pubmed/35616520 http://dx.doi.org/10.7554/eLife.77545 Text en © 2022, Rane et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Computational and Systems Biology
Rane, Roshan Prakash
de Man, Evert Ferdinand
Kim, JiHoon
Görgen, Kai
Tschorn, Mira
Rapp, Michael A
Banaschewski, Tobias
Bokde, Arun LW
Desrivieres, Sylvane
Flor, Herta
Grigis, Antoine
Garavan, Hugh
Gowland, Penny A
Brühl, Rüdiger
Martinot, Jean-Luc
Martinot, Marie-Laure Paillere
Artiges, Eric
Nees, Frauke
Papadopoulos Orfanos, Dimitri
Lemaitre, Herve
Paus, Tomas
Poustka, Luise
Fröhner, Juliane
Robinson, Lauren
Smolka, Michael N
Winterer, Jeanne
Whelan, Robert
Schumann, Gunter
Walter, Henrik
Heinz, Andreas
Ritter, Kerstin
Structural differences in adolescent brains can predict alcohol misuse
title Structural differences in adolescent brains can predict alcohol misuse
title_full Structural differences in adolescent brains can predict alcohol misuse
title_fullStr Structural differences in adolescent brains can predict alcohol misuse
title_full_unstemmed Structural differences in adolescent brains can predict alcohol misuse
title_short Structural differences in adolescent brains can predict alcohol misuse
title_sort structural differences in adolescent brains can predict alcohol misuse
topic Computational and Systems Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9255959/
https://www.ncbi.nlm.nih.gov/pubmed/35616520
http://dx.doi.org/10.7554/eLife.77545
work_keys_str_mv AT raneroshanprakash structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT demanevertferdinand structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT kimjihoon structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT gorgenkai structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT tschornmira structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT rappmichaela structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT banaschewskitobias structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT bokdearunlw structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT desrivieressylvane structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT florherta structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT grigisantoine structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT garavanhugh structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT gowlandpennya structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT bruhlrudiger structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT martinotjeanluc structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT martinotmarielaurepaillere structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT artigeseric structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT neesfrauke structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT papadopoulosorfanosdimitri structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT lemaitreherve structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT paustomas structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT poustkaluise structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT frohnerjuliane structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT robinsonlauren structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT smolkamichaeln structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT wintererjeanne structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT whelanrobert structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT schumanngunter structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT walterhenrik structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT heinzandreas structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT ritterkerstin structuraldifferencesinadolescentbrainscanpredictalcoholmisuse
AT structuraldifferencesinadolescentbrainscanpredictalcoholmisuse