Cargando…
Identification of Key Genes in Severe Burns by Using Weighted Gene Coexpression Network Analysis
The aims of this work were to explore the use of weighted gene coexpression network analysis (WGCNA) for identifying the key genes in severe burns and to provide a reference for finding therapeutic targets for burn wounds. The GSE8056 dataset was selected from the gene expression database of the US...
Autores principales: | Guo, ZhiHui, Zhang, YuJiao, Ming, ZhiGuo, Hao, ZhenMing, Duan, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256319/ https://www.ncbi.nlm.nih.gov/pubmed/35799661 http://dx.doi.org/10.1155/2022/5220403 |
Ejemplares similares
-
Identification of Key Modules, Hub Genes, and Noncoding RNAs in Chronic Rhinosinusitis with Nasal Polyps by Weighted Gene Coexpression Network Analysis
por: Zhou, Xuanchen, et al.
Publicado: (2020) -
Identification of Key Genes Related to the Obesity Patients with Osteoarthritis Based on Weighted Gene Coexpression Network Analysis (WGCNA)
por: Zhou, Quan, et al.
Publicado: (2022) -
Differentially Coexpressed Disease Gene Identification Based on Gene Coexpression Network
por: Jiang, Xue, et al.
Publicado: (2016) -
Weighted gene coexpression network analysis-based identification of key modules and hub genes associated with drought sensitivity in rice
por: Yu, Baiyang, et al.
Publicado: (2020) -
Identification of key gene modules and hub genes of human mantle cell lymphoma by coexpression network analysis
por: Guo, Dongmei, et al.
Publicado: (2020)