Cargando…
An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System
Softwares are involved in all aspects of healthcare, such as booking appointments to software systems that are used for treatment and care of patients. Many vendors and consultants develop high quality software healthcare systems such as hospital management systems, medical electronic systems, and m...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256343/ https://www.ncbi.nlm.nih.gov/pubmed/35800696 http://dx.doi.org/10.1155/2022/7210928 |
_version_ | 1784741089979138048 |
---|---|
author | Yousaf, Iqra Anwar, Fareeha Imtiaz, Salma Almadhor, Ahmad S. Ishmanov, Farruh Kim, Sung Won |
author_facet | Yousaf, Iqra Anwar, Fareeha Imtiaz, Salma Almadhor, Ahmad S. Ishmanov, Farruh Kim, Sung Won |
author_sort | Yousaf, Iqra |
collection | PubMed |
description | Softwares are involved in all aspects of healthcare, such as booking appointments to software systems that are used for treatment and care of patients. Many vendors and consultants develop high quality software healthcare systems such as hospital management systems, medical electronic systems, and middle-ware softwares in medical devices. Internet of Things (IoT) medical devices are gaining attention and facilitate the people with new technology. The health condition of the patients are monitored by the IoT devices using sensors, specifically brain diseases such as Alzheimer, Parkinson's, and Traumatic brain injury. Embedded software is present in IoT medical devices and the complexity of software increases day-by-day with the increase in the number and complexity of bugs in the devices. Bugs present in IoT medical devices can have severe consequences such as inaccurate records, circulatory suffering, and death in some cases along with delay in handling patients. There is a need to predict the impact of bugs (severe or nonsevere), especially in case of IoT medical devices due to their critical nature. This research proposes a hybrid bug severity prediction model using convolution neural network (CNN) and Harris Hawk optimization (HHO) based on an optimized hyperparameter of CNN with HHO. The dataset is created, that consists of the bugs present in healthcare systems and IoT medical devices, which is used for evaluation of the proposed model. A preprocessing technique on textual dataset is applied along with a feature extraction technique for CNN embedding layer. In HHO, we define the hyperparameter values of “Batch Size, Learning Rate, Activation Function, Optimizer Parameters, and Kernel Initializers,” before training the model. Hybrid model CNN-HHO is applied, and a 10-fold cross validation is performed for evaluation. Results indicate an accuracy of 96.21% with the proposed model. |
format | Online Article Text |
id | pubmed-9256343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-92563432022-07-06 An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System Yousaf, Iqra Anwar, Fareeha Imtiaz, Salma Almadhor, Ahmad S. Ishmanov, Farruh Kim, Sung Won Comput Intell Neurosci Research Article Softwares are involved in all aspects of healthcare, such as booking appointments to software systems that are used for treatment and care of patients. Many vendors and consultants develop high quality software healthcare systems such as hospital management systems, medical electronic systems, and middle-ware softwares in medical devices. Internet of Things (IoT) medical devices are gaining attention and facilitate the people with new technology. The health condition of the patients are monitored by the IoT devices using sensors, specifically brain diseases such as Alzheimer, Parkinson's, and Traumatic brain injury. Embedded software is present in IoT medical devices and the complexity of software increases day-by-day with the increase in the number and complexity of bugs in the devices. Bugs present in IoT medical devices can have severe consequences such as inaccurate records, circulatory suffering, and death in some cases along with delay in handling patients. There is a need to predict the impact of bugs (severe or nonsevere), especially in case of IoT medical devices due to their critical nature. This research proposes a hybrid bug severity prediction model using convolution neural network (CNN) and Harris Hawk optimization (HHO) based on an optimized hyperparameter of CNN with HHO. The dataset is created, that consists of the bugs present in healthcare systems and IoT medical devices, which is used for evaluation of the proposed model. A preprocessing technique on textual dataset is applied along with a feature extraction technique for CNN embedding layer. In HHO, we define the hyperparameter values of “Batch Size, Learning Rate, Activation Function, Optimizer Parameters, and Kernel Initializers,” before training the model. Hybrid model CNN-HHO is applied, and a 10-fold cross validation is performed for evaluation. Results indicate an accuracy of 96.21% with the proposed model. Hindawi 2022-06-28 /pmc/articles/PMC9256343/ /pubmed/35800696 http://dx.doi.org/10.1155/2022/7210928 Text en Copyright © 2022 Iqra Yousaf et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Yousaf, Iqra Anwar, Fareeha Imtiaz, Salma Almadhor, Ahmad S. Ishmanov, Farruh Kim, Sung Won An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System |
title | An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System |
title_full | An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System |
title_fullStr | An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System |
title_full_unstemmed | An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System |
title_short | An Optimized Hyperparameter of Convolutional Neural Network Algorithm for Bug Severity Prediction in Alzheimer's-Based IoT System |
title_sort | optimized hyperparameter of convolutional neural network algorithm for bug severity prediction in alzheimer's-based iot system |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256343/ https://www.ncbi.nlm.nih.gov/pubmed/35800696 http://dx.doi.org/10.1155/2022/7210928 |
work_keys_str_mv | AT yousafiqra anoptimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT anwarfareeha anoptimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT imtiazsalma anoptimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT almadhorahmads anoptimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT ishmanovfarruh anoptimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT kimsungwon anoptimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT yousafiqra optimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT anwarfareeha optimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT imtiazsalma optimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT almadhorahmads optimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT ishmanovfarruh optimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem AT kimsungwon optimizedhyperparameterofconvolutionalneuralnetworkalgorithmforbugseveritypredictioninalzheimersbasediotsystem |