Cargando…
A simulation of diffractive liquid crystal smart window for privacy application
Using a single substrate, we demonstrate a simple two-dimensional (2-D) phase grating cell with an octothorp electrode. Owing to the large spatial phase difference in any direction, the proposed grating cell has a high haze value in the opaque state (76.7%); Moreover, it has the advantages of a one-...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256592/ https://www.ncbi.nlm.nih.gov/pubmed/35790764 http://dx.doi.org/10.1038/s41598-022-15636-2 |
Sumario: | Using a single substrate, we demonstrate a simple two-dimensional (2-D) phase grating cell with an octothorp electrode. Owing to the large spatial phase difference in any direction, the proposed grating cell has a high haze value in the opaque state (76.7%); Moreover, it has the advantages of a one-dimensional (1-D) phase grating cell, such as high fabricability, fast response time, and low operating voltage. Furthermore, the proposed grating cell has a faster response time than the 2-D grating cell (comparable to a 1-D grating cell). All the electro-optic parameters have been calculated using a commercial modeling tool. Consequently, we expect our proposed grating cell to find applications in virtual reality (VR)/augmented reality (AR) systems or window displays with fast response times. |
---|