Cargando…

Regulatory network for FOREVER YOUNG FLOWER-like genes in regulating Arabidopsis flower senescence and abscission

FOREVER YOUNG FLOWER (FYF) has been reported to play an important role in regulating flower senescence/abscission. Here, we functionally analyzed five Arabidopsis FYF-like genes, two in the FYF subgroup (FYL1/AGL71 and FYL2/AGL72) and three in the SOC1 subgroup (SOC1/AGL20, AGL19, and AGL14/XAL2), a...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Wei-Han, Lin, Pei-Tzu, Hsu, Wei-Han, Hsu, Hsing-Fun, Li, Ya-Chun, Tsao, Chin-Wei, Hsu, Mao-Cheng, Mao, Wan-Ting, Yang, Chang-Hsien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256709/
https://www.ncbi.nlm.nih.gov/pubmed/35790878
http://dx.doi.org/10.1038/s42003-022-03629-w
Descripción
Sumario:FOREVER YOUNG FLOWER (FYF) has been reported to play an important role in regulating flower senescence/abscission. Here, we functionally analyzed five Arabidopsis FYF-like genes, two in the FYF subgroup (FYL1/AGL71 and FYL2/AGL72) and three in the SOC1 subgroup (SOC1/AGL20, AGL19, and AGL14/XAL2), and showed their involvement in the regulation of flower senescence and/or abscission. We demonstrated that in FYF subgroup, FYF has both functions in suppressing flower senescence and abscission, FYL1 only suppresses flower abscission and FYL2 has been converted as an activator to promote flower senescence. In SOC1 subgroup, AGL19/AGL14/SOC1 have only one function in suppressing flower senescence. We also found that FYF-like proteins can form heterotetrameric complexes with different combinations of A/E functional proteins (such as AGL6 and SEP1) and AGL15/18-like proteins to perform their functions. These findings greatly expand the current knowledge behind the multifunctional evolution of FYF-like genes and uncover their regulatory network in plants.