Cargando…
SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples
We outline the features of the R package SparseSignatures and its application to determine the signatures contributing to mutation profiles of tumor samples. We describe installation details and illustrate a step-by-step approach to (1) prepare the data for signature analysis, (2) determine the opti...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256827/ https://www.ncbi.nlm.nih.gov/pubmed/35779264 http://dx.doi.org/10.1016/j.xpro.2022.101513 |
_version_ | 1784741206971908096 |
---|---|
author | Mella, Lorenzo Lal, Avantika Angaroni, Fabrizio Maspero, Davide Piazza, Rocco Sidow, Arend Antoniotti, Marco Graudenzi, Alex Ramazzotti, Daniele |
author_facet | Mella, Lorenzo Lal, Avantika Angaroni, Fabrizio Maspero, Davide Piazza, Rocco Sidow, Arend Antoniotti, Marco Graudenzi, Alex Ramazzotti, Daniele |
author_sort | Mella, Lorenzo |
collection | PubMed |
description | We outline the features of the R package SparseSignatures and its application to determine the signatures contributing to mutation profiles of tumor samples. We describe installation details and illustrate a step-by-step approach to (1) prepare the data for signature analysis, (2) determine the optimal parameters, and (3) employ them to determine the signatures and related exposure levels in the point mutation dataset. For complete details on the use and execution of this protocol, please refer to Lal et al. (2021). |
format | Online Article Text |
id | pubmed-9256827 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92568272022-07-07 SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples Mella, Lorenzo Lal, Avantika Angaroni, Fabrizio Maspero, Davide Piazza, Rocco Sidow, Arend Antoniotti, Marco Graudenzi, Alex Ramazzotti, Daniele STAR Protoc Protocol We outline the features of the R package SparseSignatures and its application to determine the signatures contributing to mutation profiles of tumor samples. We describe installation details and illustrate a step-by-step approach to (1) prepare the data for signature analysis, (2) determine the optimal parameters, and (3) employ them to determine the signatures and related exposure levels in the point mutation dataset. For complete details on the use and execution of this protocol, please refer to Lal et al. (2021). Elsevier 2022-07-01 /pmc/articles/PMC9256827/ /pubmed/35779264 http://dx.doi.org/10.1016/j.xpro.2022.101513 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Protocol Mella, Lorenzo Lal, Avantika Angaroni, Fabrizio Maspero, Davide Piazza, Rocco Sidow, Arend Antoniotti, Marco Graudenzi, Alex Ramazzotti, Daniele SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples |
title | SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples |
title_full | SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples |
title_fullStr | SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples |
title_full_unstemmed | SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples |
title_short | SparseSignatures: An R package using LASSO-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples |
title_sort | sparsesignatures: an r package using lasso-regularized non-negative matrix factorization to identify mutational signatures from human tumor samples |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256827/ https://www.ncbi.nlm.nih.gov/pubmed/35779264 http://dx.doi.org/10.1016/j.xpro.2022.101513 |
work_keys_str_mv | AT mellalorenzo sparsesignaturesanrpackageusinglassoregularizednonnegativematrixfactorizationtoidentifymutationalsignaturesfromhumantumorsamples AT lalavantika sparsesignaturesanrpackageusinglassoregularizednonnegativematrixfactorizationtoidentifymutationalsignaturesfromhumantumorsamples AT angaronifabrizio sparsesignaturesanrpackageusinglassoregularizednonnegativematrixfactorizationtoidentifymutationalsignaturesfromhumantumorsamples AT masperodavide sparsesignaturesanrpackageusinglassoregularizednonnegativematrixfactorizationtoidentifymutationalsignaturesfromhumantumorsamples AT piazzarocco sparsesignaturesanrpackageusinglassoregularizednonnegativematrixfactorizationtoidentifymutationalsignaturesfromhumantumorsamples AT sidowarend sparsesignaturesanrpackageusinglassoregularizednonnegativematrixfactorizationtoidentifymutationalsignaturesfromhumantumorsamples AT antoniottimarco sparsesignaturesanrpackageusinglassoregularizednonnegativematrixfactorizationtoidentifymutationalsignaturesfromhumantumorsamples AT graudenzialex sparsesignaturesanrpackageusinglassoregularizednonnegativematrixfactorizationtoidentifymutationalsignaturesfromhumantumorsamples AT ramazzottidaniele sparsesignaturesanrpackageusinglassoregularizednonnegativematrixfactorizationtoidentifymutationalsignaturesfromhumantumorsamples |