Cargando…
A structural characterization of shortcut features for prediction
With the rising use of machine learning for healthcare applications, practitioners are increasingly confronted with the limitations of prediction models that are trained in one setting but meant to be deployed in several others. One recently identified limitation is so-called shortcut learning, wher...
Autores principales: | Bellamy, David, Hernán, Miguel A., Beam, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256901/ https://www.ncbi.nlm.nih.gov/pubmed/35792990 http://dx.doi.org/10.1007/s10654-022-00892-3 |
Ejemplares similares
-
No shortcuts for research assessment
por: Bertuzzi, Stefano, et al.
Publicado: (2013) -
Extraction, Purification, and Structural Characterization of Polysaccharides from Sanghuangporus vaninii with Anti-Inflammatory Activity
por: Liu, Jinze, et al.
Publicado: (2023) -
Detecting shortcut learning for fair medical AI using shortcut testing
por: Brown, Alexander, et al.
Publicado: (2023) -
Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory
por: Chevin, Luis-Miguel, et al.
Publicado: (2010) -
Using the Genomic Shortcut to Predict Bacterial Behavior
Publicado: (2005)