Cargando…
XGBoost-Based Feature Learning Method for Mining COVID-19 Novel Diagnostic Markers
In December 2019, an outbreak of novel coronavirus pneumonia spread over Wuhan, Hubei Province, China, which then developed into a significant global health public event, giving rise to substantial economic losses. We downloaded throat swab expression profiling data of COVID-19 positive and negative...
Autores principales: | Song, Xianbin, Zhu, Jiangang, Tan, Xiaoli, Yu, Wenlong, Wang, Qianqian, Shen, Dongfeng, Chen, Wenyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256927/ https://www.ncbi.nlm.nih.gov/pubmed/35812523 http://dx.doi.org/10.3389/fpubh.2022.926069 |
Ejemplares similares
-
Predicting the risk factors of diabetic ketoacidosis-associated acute kidney injury: A machine learning approach using XGBoost
por: Fan, Tingting, et al.
Publicado: (2023) -
Impact of COVID-19 on mental health in China: analysis based on sentiment knowledge enhanced pre-training and XGBoost algorithm
por: Huang, Ru, et al.
Publicado: (2023) -
Screening of Gene Expression Markers for Corona Virus Disease 2019 Through Boruta_MCFS Feature Selection
por: Sun, Yanbao, et al.
Publicado: (2022) -
A forced cough sound based pulmonary function assessment method by using machine learning
por: Xu, Wenlong, et al.
Publicado: (2022) -
Spinal disease diagnosis assistant based on MRI images using deep transfer learning methods
por: Xuan, Junbo, et al.
Publicado: (2023)