Cargando…

Wnt3a knockdown promotes collagen type II expression in rat chondrocytes

Osteoarthritis (OA) is a chronic condition caused by cartilage degradation, and there are currently no effective methods for preventing the progression of this disease; gene therapy is a relatively novel method for treating arthritis. Decreased collagen type II (Col2) expression within the cartilage...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Shiping, Man, Zhentao, Sun, Shui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257960/
https://www.ncbi.nlm.nih.gov/pubmed/35837029
http://dx.doi.org/10.3892/etm.2022.11453
Descripción
Sumario:Osteoarthritis (OA) is a chronic condition caused by cartilage degradation, and there are currently no effective methods for preventing the progression of this disease; gene therapy is a relatively novel method for treating arthritis. Decreased collagen type II (Col2) expression within the cartilage matrix is an important factor for the development of OA, and Wnt3a serves a significant role in cartilage homeostasis. The present study assessed whether Wnt3a knockdown promoted Col2 expression in chondrocytes. Lentivirus-introduced small interfering RNA was used to knock down the expression of Wnt3a in primary rat chondrocytes, and then IL-1β treatment was used to establish an OA chondrocyte model. The expression of target genes (Wnt3a, Col2, MMP-13 and β-catenin) was analyzed using reverse transcription-quantitative PCR, western blotting and immunocytochemistry. There was significantly less MMP-13 and β-catenin expression in the Wnt3a knockdown cells compared with the other controls. Col2 expression was significantly higher in the Wnt3a-knockdown cells compared with the control cells, indicating that knockdown of Wnt3a may promote Col2 expression. Consequently, Wnt3a was indicated to be an important factor in cartilage homeostasis, and Wnt3a knockdown may serve as a novel method for OA therapy.