Cargando…
MicroRNA-146a attenuates isoproterenol-induced cardiac fibrosis by inhibiting FGF2
Cardiac fibrosis is a key factor of heart failure. Increasing evidence suggests that microRNAs (miRNAs/miRs) serve vital roles in the pathogenesis of cardiac fibrosis. The present study aimed to investigate the role of miR-146a-5p in isoproterenol (ISO)-induced cardiac fibrosis. Reverse transcriptio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9257964/ https://www.ncbi.nlm.nih.gov/pubmed/35837047 http://dx.doi.org/10.3892/etm.2022.11433 |
Sumario: | Cardiac fibrosis is a key factor of heart failure. Increasing evidence suggests that microRNAs (miRNAs/miRs) serve vital roles in the pathogenesis of cardiac fibrosis. The present study aimed to investigate the role of miR-146a-5p in isoproterenol (ISO)-induced cardiac fibrosis. Reverse transcription-quantitative PCR analysis demonstrated that miR-146a-5p expression was downregulated in ISO-treated rat heart tissue and ISO-induced cardiac fibroblasts (CFs). Conversely, the expression levels of basic fibroblast growth factor 2 (FGF2), collagen I and smooth muscle α-actin (α-SMA) were upregulated in ISO-treated rat cardiac tissue and CFs. Furthermore, viability and differentiation were inhibited in ISO-induced CFs transfected with miR-146a-5p mimics. Dual-luciferase reporter assay confirmed that miR-146a-5p targeted FGF2. Notably, FGF2 expression was suppressed following overexpression of miR-146a-5p, while FGF2 expression increased following miR-146a-5p knockdown. In addition, FGF2 knockdown suppressed the expression levels of FGF2, collagen I and α-SMA levels in CFs. Taken together, the results of the present study suggested that the miR-146a-5p/FGF2 pathway may be a novel therapy for cardiac fibrosis. |
---|