Cargando…
Accurate and generalizable quantitative scoring of liver steatosis from ultrasound images via scalable deep learning
BACKGROUND: Hepatic steatosis is a major cause of chronic liver disease. Two-dimensional (2D) ultrasound is the most widely used non-invasive tool for screening and monitoring, but associated diagnoses are highly subjective. AIM: To develop a scalable deep learning (DL) algorithm for quantitative sc...
Autores principales: | Li, Bowen, Tai, Dar-In, Yan, Ke, Chen, Yi-Cheng, Chen, Cheng-Jen, Huang, Shiu-Feng, Hsu, Tse-Hwa, Yu, Wan-Ting, Xiao, Jing, Le, Lu, Harrison, Adam P |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258285/ https://www.ncbi.nlm.nih.gov/pubmed/35979264 http://dx.doi.org/10.3748/wjg.v28.i22.2494 |
Ejemplares similares
-
Steatosis Quantification on Ultrasound Images by a Deep Learning Algorithm on Patients Undergoing Weight Changes
por: Harrison, Adam P., et al.
Publicado: (2023) -
Metabolic dysfunction is associated with steatosis but no other histologic features in nonalcoholic fatty liver disease
por: Dai, Yi-Ning, et al.
Publicado: (2022) -
Development of scalable and generalizable machine learned force field for polymers
por: Mohanty, Shaswat, et al.
Publicado: (2023) -
Accuracy of multi-echo Dixon sequence in quantification of hepatic steatosis in Chinese children and adolescents
por: Zhao, Yu-Zhen, et al.
Publicado: (2019) -
Limits to the accurate and generalizable use of soundscapes to monitor biodiversity
por: Sethi, Sarab S., et al.
Publicado: (2023)