Cargando…
A machine learning protocol for revealing ion transport mechanisms from dynamic NMR shifts in paramagnetic battery materials
Solid-state nuclear magnetic resonance (ssNMR) provides local environments and dynamic fingerprints of alkali ions in paramagnetic battery materials. Linking the local ionic environments and NMR signals requires expensive first-principles computational tools that have been developed for over a decad...
Autores principales: | Lin, Min, Xiong, Jingfang, Su, Mintao, Wang, Feng, Liu, Xiangsi, Hou, Yifan, Fu, Riqiang, Yang, Yong, Cheng, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258323/ https://www.ncbi.nlm.nih.gov/pubmed/35865892 http://dx.doi.org/10.1039/d2sc01306a |
Ejemplares similares
-
NMR of paramagnetic molecules
por: Berliner, Lawrence J, et al.
Publicado: (1993) -
Crystal and Substituent Effects on Paramagnetic NMR
Shifts in Transition-Metal
Complexes
por: Novotný, Jan, et al.
Publicado: (2021) -
Structure
Determination and Refinement of Paramagnetic
Materials by Solid-State NMR
por: Koppe, Jonas, et al.
Publicado: (2023) -
Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts
por: Ott, Jonas C., et al.
Publicado: (2021) -
Paramagnetic NMR in drug discovery
por: Softley, Charlotte A., et al.
Publicado: (2020)