Cargando…
Deep learning from phylogenies to uncover the epidemiological dynamics of outbreaks
Widely applicable, accurate and fast inference methods in phylodynamics are needed to fully profit from the richness of genetic data in uncovering the dynamics of epidemics. Standard methods, including maximum-likelihood and Bayesian approaches, generally rely on complex mathematical formulae and ap...
Autores principales: | Voznica, J., Zhukova, A., Boskova, V., Saulnier, E., Lemoine, F., Moslonka-Lefebvre, M., Gascuel, O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258765/ https://www.ncbi.nlm.nih.gov/pubmed/35794110 http://dx.doi.org/10.1038/s41467-022-31511-0 |
Ejemplares similares
-
Inferring epidemiological parameters from phylogenies using regression-ABC: A comparative study
por: Saulnier, Emma, et al.
Publicado: (2017) -
COVID-Align: accurate online alignment of hCoV-19 genomes using a profile HMM
por: Lemoine, Frédéric, et al.
Publicado: (2020) -
Inference of Epidemiological Dynamics Based on Simulated Phylogenies Using Birth-Death and Coalescent Models
por: Boskova, Veronika, et al.
Publicado: (2014) -
Cuban history of CRF19 recombinant subtype of HIV-1
por: Zhukova, Anna, et al.
Publicado: (2021) -
Correction: Cuban history of CRF19 recombinant subtype of HIV-1
por: Zhukova, Anna, et al.
Publicado: (2022)