Cargando…
Oral doxycycline prevents skin-associated adverse effects induced by injectable collagenase in a rodent model of capsular contracture around silicone implants
BACKGROUND: The collagenase of the bacterium Clostridium histolyticum (CCH) is already an established treatment for fibroproliferative diseases like M. Dupuytren and M. Peyronie Although results are comparable to surgical intervention, skin laceration is a severe and relevant side effect. Doxycyclin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258873/ https://www.ncbi.nlm.nih.gov/pubmed/35793344 http://dx.doi.org/10.1371/journal.pone.0270112 |
_version_ | 1784741647262679040 |
---|---|
author | Diehm, Yannick F. Kotsougiani-Fischer, Dimitra Porst, Elena Haug, Valentin Siegwart, Laura C. Overhoff, Daniel Kneser, Ulrich Fischer, Sebastian |
author_facet | Diehm, Yannick F. Kotsougiani-Fischer, Dimitra Porst, Elena Haug, Valentin Siegwart, Laura C. Overhoff, Daniel Kneser, Ulrich Fischer, Sebastian |
author_sort | Diehm, Yannick F. |
collection | PubMed |
description | BACKGROUND: The collagenase of the bacterium Clostridium histolyticum (CCH) is already an established treatment for fibroproliferative diseases like M. Dupuytren and M. Peyronie Although results are comparable to surgical intervention, skin laceration is a severe and relevant side effect. Doxycycline (DOX) recently rose interest as an inhibitor of matrix-metalloproteinases alongside its capabilities of skin accumulation. It therefore might be a potential skin protective agent in the use of CCH. METHODS: For simulation of a fibroproliferative disease adjacent to the skin, we utilized a rodent model of capsular fibrosis involving silicone implants and subsequent fibrotic capsule formation. For in-vitro studies, fibrotic capsules were excised and incubated with 0.9 mg/ml CCH and four different doses of DOX. For in-vivo experiments, animals received 0.0, 0.3 or 0.9 mg/ml CCH injections into the fibrotic capsules with or without prior oral DOX administration. Outcome analysis included histology, immunohistochemistry, gene expression analysis, chemical collagen and DOX concentration measurements as well as μCT imaging. RESULTS: In-vitro, DOX showed a dose-dependent inhibition of CCH activity associated with increasing capsule thickness and collagen density and content. In-vivo, oral DOX administration did neither interfere with capsule formation nor in effectiveness of CCH dissolving fibrotic capsule tissue. However, skin thickness and especially collagen density was significantly higher compared to control groups. This led to a reduced rate of clinical skin lacerations after DOX administration. CONCLUSION: DOX inhibits CCH and accumulates in the skin. Thereby, DOX can effectively reduce skin laceration after CCH treatment. |
format | Online Article Text |
id | pubmed-9258873 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-92588732022-07-07 Oral doxycycline prevents skin-associated adverse effects induced by injectable collagenase in a rodent model of capsular contracture around silicone implants Diehm, Yannick F. Kotsougiani-Fischer, Dimitra Porst, Elena Haug, Valentin Siegwart, Laura C. Overhoff, Daniel Kneser, Ulrich Fischer, Sebastian PLoS One Research Article BACKGROUND: The collagenase of the bacterium Clostridium histolyticum (CCH) is already an established treatment for fibroproliferative diseases like M. Dupuytren and M. Peyronie Although results are comparable to surgical intervention, skin laceration is a severe and relevant side effect. Doxycycline (DOX) recently rose interest as an inhibitor of matrix-metalloproteinases alongside its capabilities of skin accumulation. It therefore might be a potential skin protective agent in the use of CCH. METHODS: For simulation of a fibroproliferative disease adjacent to the skin, we utilized a rodent model of capsular fibrosis involving silicone implants and subsequent fibrotic capsule formation. For in-vitro studies, fibrotic capsules were excised and incubated with 0.9 mg/ml CCH and four different doses of DOX. For in-vivo experiments, animals received 0.0, 0.3 or 0.9 mg/ml CCH injections into the fibrotic capsules with or without prior oral DOX administration. Outcome analysis included histology, immunohistochemistry, gene expression analysis, chemical collagen and DOX concentration measurements as well as μCT imaging. RESULTS: In-vitro, DOX showed a dose-dependent inhibition of CCH activity associated with increasing capsule thickness and collagen density and content. In-vivo, oral DOX administration did neither interfere with capsule formation nor in effectiveness of CCH dissolving fibrotic capsule tissue. However, skin thickness and especially collagen density was significantly higher compared to control groups. This led to a reduced rate of clinical skin lacerations after DOX administration. CONCLUSION: DOX inhibits CCH and accumulates in the skin. Thereby, DOX can effectively reduce skin laceration after CCH treatment. Public Library of Science 2022-07-06 /pmc/articles/PMC9258873/ /pubmed/35793344 http://dx.doi.org/10.1371/journal.pone.0270112 Text en © 2022 Diehm et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Diehm, Yannick F. Kotsougiani-Fischer, Dimitra Porst, Elena Haug, Valentin Siegwart, Laura C. Overhoff, Daniel Kneser, Ulrich Fischer, Sebastian Oral doxycycline prevents skin-associated adverse effects induced by injectable collagenase in a rodent model of capsular contracture around silicone implants |
title | Oral doxycycline prevents skin-associated adverse effects induced by injectable collagenase in a rodent model of capsular contracture around silicone implants |
title_full | Oral doxycycline prevents skin-associated adverse effects induced by injectable collagenase in a rodent model of capsular contracture around silicone implants |
title_fullStr | Oral doxycycline prevents skin-associated adverse effects induced by injectable collagenase in a rodent model of capsular contracture around silicone implants |
title_full_unstemmed | Oral doxycycline prevents skin-associated adverse effects induced by injectable collagenase in a rodent model of capsular contracture around silicone implants |
title_short | Oral doxycycline prevents skin-associated adverse effects induced by injectable collagenase in a rodent model of capsular contracture around silicone implants |
title_sort | oral doxycycline prevents skin-associated adverse effects induced by injectable collagenase in a rodent model of capsular contracture around silicone implants |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258873/ https://www.ncbi.nlm.nih.gov/pubmed/35793344 http://dx.doi.org/10.1371/journal.pone.0270112 |
work_keys_str_mv | AT diehmyannickf oraldoxycyclinepreventsskinassociatedadverseeffectsinducedbyinjectablecollagenaseinarodentmodelofcapsularcontracturearoundsiliconeimplants AT kotsougianifischerdimitra oraldoxycyclinepreventsskinassociatedadverseeffectsinducedbyinjectablecollagenaseinarodentmodelofcapsularcontracturearoundsiliconeimplants AT porstelena oraldoxycyclinepreventsskinassociatedadverseeffectsinducedbyinjectablecollagenaseinarodentmodelofcapsularcontracturearoundsiliconeimplants AT haugvalentin oraldoxycyclinepreventsskinassociatedadverseeffectsinducedbyinjectablecollagenaseinarodentmodelofcapsularcontracturearoundsiliconeimplants AT siegwartlaurac oraldoxycyclinepreventsskinassociatedadverseeffectsinducedbyinjectablecollagenaseinarodentmodelofcapsularcontracturearoundsiliconeimplants AT overhoffdaniel oraldoxycyclinepreventsskinassociatedadverseeffectsinducedbyinjectablecollagenaseinarodentmodelofcapsularcontracturearoundsiliconeimplants AT kneserulrich oraldoxycyclinepreventsskinassociatedadverseeffectsinducedbyinjectablecollagenaseinarodentmodelofcapsularcontracturearoundsiliconeimplants AT fischersebastian oraldoxycyclinepreventsskinassociatedadverseeffectsinducedbyinjectablecollagenaseinarodentmodelofcapsularcontracturearoundsiliconeimplants |